From 96ac4c6788cdfe50c1b9534973c21d4a28b2c887 Mon Sep 17 00:00:00 2001 From: ibidyouadu Date: Sat, 24 Oct 2020 04:15:30 -0400 Subject: [PATCH] notebook looks a bit better hopefully --- .../irma_modeling-checkpoint.ipynb | 1396 +++++++++++++++++ irma_modeling.ipynb | 2 +- 2 files changed, 1397 insertions(+), 1 deletion(-) create mode 100644 .ipynb_checkpoints/irma_modeling-checkpoint.ipynb diff --git a/.ipynb_checkpoints/irma_modeling-checkpoint.ipynb b/.ipynb_checkpoints/irma_modeling-checkpoint.ipynb new file mode 100644 index 0000000..9e79428 --- /dev/null +++ b/.ipynb_checkpoints/irma_modeling-checkpoint.ipynb @@ -0,0 +1,1396 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "dpQIA2trCnVq" + }, + "source": [ + "# Hurricane Irma Damage Assessment Modeling\n", + "\n", + "In this notebook we develop a model to assess damages from hurricane Irma in Florida.\n", + "\n", + "Our dataset consists of weather, socioeconomic, and Twitter parameters from 49 counties in Florida during Irma. The dependent variable is the amount of federal aid from FEMA that a county received, `dmg`." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "executionInfo": { + "elapsed": 695, + "status": "ok", + "timestamp": 1603518985831, + "user": { + "displayName": "Angel Umana", + "photoUrl": "", + "userId": "02017183028986324110" + }, + "user_tz": 240 + }, + "id": "ShFs31gOCjKO", + "outputId": "056be537-9ff9-445a-84b1-a65f73e070e1" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
wind_totalwind_peakgust_totalgust_peakmaxwind_totalmaxwind_peakprecip_totalprecip_peakpoverty_poppoverty_ratemhigdppopulationtwt_totaltwt_peakdmg
county
Alachua County87.221.4173.053.0186.835.018.2511.395381621.24523011912080269956182399.306765e+06
Baker County81.018.6152.038.1153.024.19.217.06390015.35185647294828355111.360526e+06
Bradford County87.221.4173.053.0186.835.018.2511.39453319.14499753248727732413.246248e+06
Brevard County130.928.7240.369.9223.541.04.692.257230312.45259620453753596849354713.192891e+07
Broward County128.231.7216.973.0235.249.010.444.1125228813.15670296591919195126020363821.329551e+08
Charlotte County112.124.9305.263.9265.044.11.690.761930010.851583396631418499872206.625988e+06
Citrus County103.328.8186.855.9214.733.013.185.972065414.443147333511014792967135.568339e+06
Clay County81.018.6152.038.1153.024.19.217.06208899.96537539760072160725381.219590e+07
Collier County41.512.1296.076.9283.063.95.124.204307511.76670916124953378488231636.194133e+07
Columbia County87.221.4173.053.0186.835.018.2511.391072016.5420971826541705031443.225476e+06
DeSoto County112.124.9305.263.9265.044.11.690.76876626.13734273528637489524.049290e+06
Dixie County96.226.8226.553.0200.935.94.392.38362724.43835517826116700759.079057e+05
Duval County143.029.3179.962.0234.442.99.217.0613806915.152105601467659501817721374.740938e+07
Flagler County116.323.5226.359.1238.844.18.664.661313712.052713180915111206763167.243310e+06
Gilchrist County96.226.8226.553.0200.935.94.392.38267516.14288025426018256316.418368e+05
Glades County77.122.1239.262.0210.840.09.967.09231218.94286517157313724421.684916e+06
Hamilton County57.717.0135.932.1132.820.04.392.38279124.03526237730914310537.796505e+05
Hardee County100.225.9372.175.0272.254.02.631.36602623.34005689334927245836.791781e+06
Hendry County115.127.8296.076.9283.063.912.618.84952523.938361124187241556214.864095e+06
Hernando County103.328.8186.855.9214.733.013.185.972577314.044710303126719086543126.987439e+06
Highlands County100.225.9372.175.0272.254.02.631.362005119.837445208878210542446161.104181e+07
Hillsborough County42.313.5134.848.0152.127.05.434.5021444215.5547417709379614368889902344.139342e+07
Indian River County107.024.0251.276.9240.549.910.868.111624910.651797500170215741379235.417251e+06
Lafayette County57.717.0135.932.1132.820.04.392.38157922.7415491606148732214.387254e+05
Lake County101.725.4248.160.0206.436.910.518.054302012.6514297452383356495151471.418739e+07
Lee County101.222.7214.773.0228.149.96.081.898584411.85419823806704754610380636.269670e+07
Levy County96.226.8226.553.0200.935.94.392.38832920.83727263670140770721.823098e+06
Manatee County116.225.2240.855.9234.342.07.085.714105710.85518911968028394855170331.369299e+07
Marion County60.522.0186.147.0156.132.10.440.235588016.2437727956019359977121301.934269e+07
Martin County101.213.7183.134.0188.922.016.329.431700210.958344653310316091285222.936391e+06
Miami-Dade County129.628.7269.062.9238.542.99.335.1845264916.749758141734334276158140637302.417464e+08
Monroe County129.628.7269.062.9238.542.99.335.18896311.863009409751175027158311.061900e+08
Nassau County115.828.5203.075.0218.542.910.059.0174849.17059018862618583249164.184525e+06
Okeechobee County77.122.1239.262.0210.840.02.631.36841521.842524102147741537722.920370e+06
Orange County107.125.5216.366.0244.944.110.367.4820152815.35402189817807138064517943465.216380e+07
Osceola County115.529.9268.069.0285.749.913.437.024889214.0492849207981367990205501.244058e+07
Palm Beach County145.031.0335.276.0273.051.13.961.9217086811.8600597686650514859419041678.307278e+07
Pasco County103.328.8186.855.9214.733.013.185.976763513.0512479330553539630206581.824896e+07
Pinellas County113.524.6242.063.9231.742.95.854.3211599012.251488441259459752807301595.632790e+07
Polk County77.533.5165.855.9157.936.98.066.2110784416.148328207796327080095241164.351088e+07
Putnam County160.035.5205.862.0254.745.118.2511.391895426.3343901925314741631641.110617e+07
Sarasota County160.035.5205.862.0254.745.19.217.06201188.3770227313073254261243681.306549e+07
Seminole County107.024.0251.276.9240.549.916.329.433983912.8499957030683321128331812.173058e+07
St. Johns County116.225.2240.855.9234.342.07.085.71380659.25842315773229426718154341.862228e+07
St. Lucie County107.825.9219.361.0251.144.111.289.245132111.26386517902542467832112322.350643e+07
Sumter County101.725.4248.160.0206.436.910.518.05106729.15793123124251287542173.424526e+06
Suwannee County57.717.0135.932.1132.820.04.392.38829920.344144851332441911242.045323e+06
Union County87.221.4173.053.0186.835.018.2511.39229122.24737334176314940335.774985e+05
Volusia County62.621.6148.155.0147.035.08.664.667987715.24691114864234547538266513.782572e+07
\n", + "
" + ], + "text/plain": [ + " wind_total wind_peak ... twt_peak dmg\n", + "county ... \n", + "Alachua County 87.2 21.4 ... 39 9.306765e+06\n", + "Baker County 81.0 18.6 ... 1 1.360526e+06\n", + "Bradford County 87.2 21.4 ... 1 3.246248e+06\n", + "Brevard County 130.9 28.7 ... 71 3.192891e+07\n", + "Broward County 128.2 31.7 ... 382 1.329551e+08\n", + "Charlotte County 112.1 24.9 ... 20 6.625988e+06\n", + "Citrus County 103.3 28.8 ... 13 5.568339e+06\n", + "Clay County 81.0 18.6 ... 8 1.219590e+07\n", + "Collier County 41.5 12.1 ... 63 6.194133e+07\n", + "Columbia County 87.2 21.4 ... 4 3.225476e+06\n", + "DeSoto County 112.1 24.9 ... 2 4.049290e+06\n", + "Dixie County 96.2 26.8 ... 5 9.079057e+05\n", + "Duval County 143.0 29.3 ... 137 4.740938e+07\n", + "Flagler County 116.3 23.5 ... 16 7.243310e+06\n", + "Gilchrist County 96.2 26.8 ... 1 6.418368e+05\n", + "Glades County 77.1 22.1 ... 2 1.684916e+06\n", + "Hamilton County 57.7 17.0 ... 3 7.796505e+05\n", + "Hardee County 100.2 25.9 ... 3 6.791781e+06\n", + "Hendry County 115.1 27.8 ... 1 4.864095e+06\n", + "Hernando County 103.3 28.8 ... 12 6.987439e+06\n", + "Highlands County 100.2 25.9 ... 16 1.104181e+07\n", + "Hillsborough County 42.3 13.5 ... 234 4.139342e+07\n", + "Indian River County 107.0 24.0 ... 23 5.417251e+06\n", + "Lafayette County 57.7 17.0 ... 1 4.387254e+05\n", + "Lake County 101.7 25.4 ... 47 1.418739e+07\n", + "Lee County 101.2 22.7 ... 63 6.269670e+07\n", + "Levy County 96.2 26.8 ... 2 1.823098e+06\n", + "Manatee County 116.2 25.2 ... 33 1.369299e+07\n", + "Marion County 60.5 22.0 ... 30 1.934269e+07\n", + "Martin County 101.2 13.7 ... 22 2.936391e+06\n", + "Miami-Dade County 129.6 28.7 ... 730 2.417464e+08\n", + "Monroe County 129.6 28.7 ... 31 1.061900e+08\n", + "Nassau County 115.8 28.5 ... 16 4.184525e+06\n", + "Okeechobee County 77.1 22.1 ... 2 2.920370e+06\n", + "Orange County 107.1 25.5 ... 346 5.216380e+07\n", + "Osceola County 115.5 29.9 ... 50 1.244058e+07\n", + "Palm Beach County 145.0 31.0 ... 167 8.307278e+07\n", + "Pasco County 103.3 28.8 ... 58 1.824896e+07\n", + "Pinellas County 113.5 24.6 ... 159 5.632790e+07\n", + "Polk County 77.5 33.5 ... 116 4.351088e+07\n", + "Putnam County 160.0 35.5 ... 4 1.110617e+07\n", + "Sarasota County 160.0 35.5 ... 68 1.306549e+07\n", + "Seminole County 107.0 24.0 ... 81 2.173058e+07\n", + "St. Johns County 116.2 25.2 ... 34 1.862228e+07\n", + "St. Lucie County 107.8 25.9 ... 32 2.350643e+07\n", + "Sumter County 101.7 25.4 ... 7 3.424526e+06\n", + "Suwannee County 57.7 17.0 ... 4 2.045323e+06\n", + "Union County 87.2 21.4 ... 3 5.774985e+05\n", + "Volusia County 62.6 21.6 ... 51 3.782572e+07\n", + "\n", + "[49 rows x 16 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "import seaborn as sns; sns.set()\n", + "\n", + "df = pd.read_csv('irma.csv')\n", + "df.set_index(keys='county',inplace=True)\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fg-Ticrhdpih" + }, + "source": [ + "## Feature Selection\n", + "\n", + "We have 15 features, but do we really need them all? Especially when we only have 49 data points. Intuitively, some of these parameters should be redundant; 6 wind parameters surely can be summarized by just one parameter. The following heatmap illustrates this intuition well." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 508 + }, + "executionInfo": { + "elapsed": 2442, + "status": "ok", + "timestamp": 1603518988380, + "user": { + "displayName": "Angel Umana", + "photoUrl": "", + "userId": "02017183028986324110" + }, + "user_tz": 240 + }, + "id": "B-5M2buOeaQV", + "outputId": "253dbed1-de76-4c5e-df95-2e371597e692" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,7))\n", + "sns.heatmap(df.corr(),\n", + " annot=True,\n", + " fmt = '.2f',\n", + " cmap='coolwarm')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SWRPvSoZQ341" + }, + "source": [ + "We can see clusters of highly correlated parameters, such as gust and max wind, or GDP, population, poverty population, and Twitter activity (i.e. parameters that scale with population). Let's find these redundancies quantitivately. Specifically, we will use **Variance Inflation Factor (VIF)**. The VIF of an independent variable is a measure of how much its variation can be attributed to other independent variables. The higher it is, the more redundant the (not so) independent variable is. VIF is calculated as follows:\n", + "\n", + "$$ VIF = \\frac{1}{1 - R^2_i} $$\n", + "\n", + "where $R_i^2$ is the $R^2$ of the multilinear regression model of the $i^{\\text{th}}$ independent variable using the other independent variables as predictors. Why not just use $R^2_i$ to measure redundancy? One intuition is that the inverse relationship will harshly penalize smaller and smaller values of $1 - R^2_i$ (the so-called **tolerance**).\n", + "\n", + "We will loop through the independent variables, construct a multilinear regressor for each one, and compute and collect the VIF's. Standard practice is to discard predictors with VIF's over 10. 5 is used sometimes too, and we'll try both threshholds and see how well they filter out our data in the models." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 284 + }, + "executionInfo": { + "elapsed": 835, + "status": "ok", + "timestamp": 1603522001992, + "user": { + "displayName": "Angel Umana", + "photoUrl": "", + "userId": "02017183028986324110" + }, + "user_tz": 240 + }, + "id": "nnUg2sP6-DIk", + "outputId": "6657d1ae-9ada-45d6-a23a-c04866775f8c" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'wind_total': 8.387395886294627,\n", + " 'wind_peak': 4.817369273234568,\n", + " 'gust_total': 7.567335957063802,\n", + " 'gust_peak': 12.338585234562844,\n", + " 'maxwind_total': 19.164251074726092,\n", + " 'maxwind_peak': 20.868875746207838,\n", + " 'precip_total': 16.29621857409362,\n", + " 'precip_peak': 16.206418387213727,\n", + " 'poverty_pop': 151.20740399956702,\n", + " 'poverty_rate': 5.049258457172382,\n", + " 'mhi': 5.406652921497216,\n", + " 'gdp': 52.95007972702599,\n", + " 'population': 160.54620481443504,\n", + " 'twt_total': 252.13557403271057,\n", + " 'twt_peak': 276.13105651634396}" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.preprocessing import robust_scale\n", + "\n", + "# preprocess data\n", + "features = df.drop(labels = ['dmg'], axis = 1).columns\n", + "X = df[features].apply(robust_scale)\n", + "Y = robust_scale(df['dmg']) # get a weird error if I try .apply\n", + "\n", + "vif_dict = {}\n", + "# run linear regression for each feature and calculate VIF\n", + "for feature in features:\n", + " X_i = X.drop(labels = [feature], axis = 1)\n", + " Y_i = X[feature]\n", + " reg = LinearRegression()\n", + " reg.fit(X_i, Y_i)\n", + " r2 = reg.score(X_i, Y_i)\n", + " vif = 1. / (1 - r2)\n", + " vif_dict[feature] = vif\n", + "vif_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 124 + }, + "executionInfo": { + "elapsed": 797, + "status": "ok", + "timestamp": 1603522548691, + "user": { + "displayName": "Angel Umana", + "photoUrl": "", + "userId": "02017183028986324110" + }, + "user_tz": 240 + }, + "id": "vbIlotUwTksT", + "outputId": "beee4687-e22c-41ac-9642-e49ce4482e2e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "wind_total 8.387396\n", + "wind_peak 4.817369\n", + "gust_total 7.567336\n", + "poverty_rate 5.049258\n", + "mhi 5.406653\n", + "dtype: float64" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vif_s = pd.Series(data = list(vif_dict.values()), index=list(vif_dict.keys()))\n", + "vif_s[vif_s < 10]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jFmHET7jZGLm" + }, + "source": [ + "So... using a tolerance of 10, the VIF test says we should use three wind parameters, poverty rate, and mhi (the last two being strongly correlated with each other; see heat map). This does not look like it will work out well. Let's see:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "executionInfo": { + "elapsed": 614, + "status": "ok", + "timestamp": 1603523340594, + "user": { + "displayName": "Angel Umana", + "photoUrl": "", + "userId": "02017183028986324110" + }, + "user_tz": 240 + }, + "id": "0ONf_rgoZhOS", + "outputId": "ed70293f-8ea6-455f-856c-ce9134e61a18" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best CV r2: 0.25\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import cross_validate\n", + "\n", + "vif_features = vif_s[vif_s < 10].index.values\n", + "\n", + "reg = LinearRegression()\n", + "cv_scores = cross_validate(reg,\n", + " X[vif_features], Y,\n", + " scoring = 'r2',\n", + " cv = 5)\n", + "best_score = np.max(cv_scores['test_score'])\n", + "print('Best CV r2: %.2f' % best_score)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "M7zFHveFb8GG" + }, + "source": [ + "By using only `wind_total`, `wind_peak`, `gust_total`, `povery_rate`, and `mhi`, the best $R^2$ from 5-fold cross-validation was 0.25. Not so hot. Let's rethink the multicollinearity problem. Looking back at the heat map,there's 4 distinct clusters:\n", + "\n", + "- Wind: `wind_total`, `wind_peak`, `gust_total`, `gust_peak`, `maxwind_total`, `maxwind_peak`\n", + "- Precipitation: `precip_total`, `precip_peak`\n", + "- Socioeconomic: `poverty_rate`, `mhi`\n", + "- Population: `poverty_pop`, `gdp`, `population`, `twt_total`, `twt_peak`\n", + "\n", + "Looking back at this I wonder two things:\n", + "\n", + "1. Why are there so many wind features?\n", + "2. Why the sum of wind features?\n", + "\n", + "The answer to #1 is actually easy: I don't know which one of average winds, gusts (i.e. sudden, fast winds), and maximum sustained winds (i.e. the highest average wind speed that is sustained over 1-minute intervals) is the best predictor for hurricane damages. But in retrospect, the popular Saffir-Simpson scale for classifying hurricanes in the US uses maximum sustained wind speed, so I should just use that.\n", + "\n", + "For #2, this is a good question. There's really no good reason, physically or analytically, to use the sum. What does the sum of average winds over a time period represent? The distance wind travelled? That doesn't seem physically significant. Furthermore, not every county has the same amount of samples of wind data, so I can't even say that it's a proxy of averages.\n", + "\n", + "So, the next step right now will be to look back at the weather data and\n", + "\n", + "- Remove `wind_` and `gust_` features.\n", + "- Replace `maxwind_total` with `maxwind_mean`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "authorship_tag": "ABX9TyNxZsCYKaph/u64/+lf7Ls+", + "collapsed_sections": [], + "mount_file_id": "1Q4J-Du4O02VX-aMhBgnqA8CcQVFolx1x", + "name": "irma_modeling.ipynb", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (Spyder)", + "language": "python3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/irma_modeling.ipynb b/irma_modeling.ipynb index 1feedd2..911637c 100644 --- a/irma_modeling.ipynb +++ b/irma_modeling.ipynb @@ -1 +1 @@ -{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"irma_modeling.ipynb","provenance":[],"collapsed_sections":[],"toc_visible":true,"mount_file_id":"1Q4J-Du4O02VX-aMhBgnqA8CcQVFolx1x","authorship_tag":"ABX9TyNxZsCYKaph/u64/+lf7Ls+"},"kernelspec":{"name":"python3","display_name":"Python 3"}},"cells":[{"cell_type":"markdown","metadata":{"id":"dpQIA2trCnVq"},"source":["# Hurricane Irma Damage Assessment Modeling\n","\n","In this notebook we develop a multilinear and decision tree model to assess damages from hurricane Irma.\n","\n","Our dataset consists of weather, socioeconomic, and Twitter parameters from 49 counties in Florida during Irma. The dependent variable is the amount of federal aid from FEMA that a county received, `dmg`."]},{"cell_type":"code","metadata":{"id":"ShFs31gOCjKO","executionInfo":{"status":"ok","timestamp":1603518985831,"user_tz":240,"elapsed":695,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"056be537-9ff9-445a-84b1-a65f73e070e1","colab":{"base_uri":"https://localhost:8080/","height":1000}},"source":["%cd '/content/drive/My Drive/Colab Notebooks/disaster_assessment/' \n","\n","import pandas as pd\n","import numpy as np\n","from matplotlib import pyplot as plt\n","import seaborn as sns; sns.set()\n","\n","df = pd.read_csv('irma.csv')\n","df.set_index(keys='county',inplace=True)\n","df"],"execution_count":7,"outputs":[{"output_type":"stream","text":["/content/drive/My Drive/Colab Notebooks/disaster_assessment\n"],"name":"stdout"},{"output_type":"execute_result","data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
wind_totalwind_peakgust_totalgust_peakmaxwind_totalmaxwind_peakprecip_totalprecip_peakpoverty_poppoverty_ratemhigdppopulationtwt_totaltwt_peakdmg
county
Alachua County87.221.4173.053.0186.835.018.2511.395381621.24523011912080269956182399.306765e+06
Baker County81.018.6152.038.1153.024.19.217.06390015.35185647294828355111.360526e+06
Bradford County87.221.4173.053.0186.835.018.2511.39453319.14499753248727732413.246248e+06
Brevard County130.928.7240.369.9223.541.04.692.257230312.45259620453753596849354713.192891e+07
Broward County128.231.7216.973.0235.249.010.444.1125228813.15670296591919195126020363821.329551e+08
Charlotte County112.124.9305.263.9265.044.11.690.761930010.851583396631418499872206.625988e+06
Citrus County103.328.8186.855.9214.733.013.185.972065414.443147333511014792967135.568339e+06
Clay County81.018.6152.038.1153.024.19.217.06208899.96537539760072160725381.219590e+07
Collier County41.512.1296.076.9283.063.95.124.204307511.76670916124953378488231636.194133e+07
Columbia County87.221.4173.053.0186.835.018.2511.391072016.5420971826541705031443.225476e+06
DeSoto County112.124.9305.263.9265.044.11.690.76876626.13734273528637489524.049290e+06
Dixie County96.226.8226.553.0200.935.94.392.38362724.43835517826116700759.079057e+05
Duval County143.029.3179.962.0234.442.99.217.0613806915.152105601467659501817721374.740938e+07
Flagler County116.323.5226.359.1238.844.18.664.661313712.052713180915111206763167.243310e+06
Gilchrist County96.226.8226.553.0200.935.94.392.38267516.14288025426018256316.418368e+05
Glades County77.122.1239.262.0210.840.09.967.09231218.94286517157313724421.684916e+06
Hamilton County57.717.0135.932.1132.820.04.392.38279124.03526237730914310537.796505e+05
Hardee County100.225.9372.175.0272.254.02.631.36602623.34005689334927245836.791781e+06
Hendry County115.127.8296.076.9283.063.912.618.84952523.938361124187241556214.864095e+06
Hernando County103.328.8186.855.9214.733.013.185.972577314.044710303126719086543126.987439e+06
Highlands County100.225.9372.175.0272.254.02.631.362005119.837445208878210542446161.104181e+07
Hillsborough County42.313.5134.848.0152.127.05.434.5021444215.5547417709379614368889902344.139342e+07
Indian River County107.024.0251.276.9240.549.910.868.111624910.651797500170215741379235.417251e+06
Lafayette County57.717.0135.932.1132.820.04.392.38157922.7415491606148732214.387254e+05
Lake County101.725.4248.160.0206.436.910.518.054302012.6514297452383356495151471.418739e+07
Lee County101.222.7214.773.0228.149.96.081.898584411.85419823806704754610380636.269670e+07
Levy County96.226.8226.553.0200.935.94.392.38832920.83727263670140770721.823098e+06
Manatee County116.225.2240.855.9234.342.07.085.714105710.85518911968028394855170331.369299e+07
Marion County60.522.0186.147.0156.132.10.440.235588016.2437727956019359977121301.934269e+07
Martin County101.213.7183.134.0188.922.016.329.431700210.958344653310316091285222.936391e+06
Miami-Dade County129.628.7269.062.9238.542.99.335.1845264916.749758141734334276158140637302.417464e+08
Monroe County129.628.7269.062.9238.542.99.335.18896311.863009409751175027158311.061900e+08
Nassau County115.828.5203.075.0218.542.910.059.0174849.17059018862618583249164.184525e+06
Okeechobee County77.122.1239.262.0210.840.02.631.36841521.842524102147741537722.920370e+06
Orange County107.125.5216.366.0244.944.110.367.4820152815.35402189817807138064517943465.216380e+07
Osceola County115.529.9268.069.0285.749.913.437.024889214.0492849207981367990205501.244058e+07
Palm Beach County145.031.0335.276.0273.051.13.961.9217086811.8600597686650514859419041678.307278e+07
Pasco County103.328.8186.855.9214.733.013.185.976763513.0512479330553539630206581.824896e+07
Pinellas County113.524.6242.063.9231.742.95.854.3211599012.251488441259459752807301595.632790e+07
Polk County77.533.5165.855.9157.936.98.066.2110784416.148328207796327080095241164.351088e+07
Putnam County160.035.5205.862.0254.745.118.2511.391895426.3343901925314741631641.110617e+07
Sarasota County160.035.5205.862.0254.745.19.217.06201188.3770227313073254261243681.306549e+07
Seminole County107.024.0251.276.9240.549.916.329.433983912.8499957030683321128331812.173058e+07
St. Johns County116.225.2240.855.9234.342.07.085.71380659.25842315773229426718154341.862228e+07
St. Lucie County107.825.9219.361.0251.144.111.289.245132111.26386517902542467832112322.350643e+07
Sumter County101.725.4248.160.0206.436.910.518.05106729.15793123124251287542173.424526e+06
Suwannee County57.717.0135.932.1132.820.04.392.38829920.344144851332441911242.045323e+06
Union County87.221.4173.053.0186.835.018.2511.39229122.24737334176314940335.774985e+05
Volusia County62.621.6148.155.0147.035.08.664.667987715.24691114864234547538266513.782572e+07
\n","
"],"text/plain":[" wind_total wind_peak ... twt_peak dmg\n","county ... \n","Alachua County 87.2 21.4 ... 39 9.306765e+06\n","Baker County 81.0 18.6 ... 1 1.360526e+06\n","Bradford County 87.2 21.4 ... 1 3.246248e+06\n","Brevard County 130.9 28.7 ... 71 3.192891e+07\n","Broward County 128.2 31.7 ... 382 1.329551e+08\n","Charlotte County 112.1 24.9 ... 20 6.625988e+06\n","Citrus County 103.3 28.8 ... 13 5.568339e+06\n","Clay County 81.0 18.6 ... 8 1.219590e+07\n","Collier County 41.5 12.1 ... 63 6.194133e+07\n","Columbia County 87.2 21.4 ... 4 3.225476e+06\n","DeSoto County 112.1 24.9 ... 2 4.049290e+06\n","Dixie County 96.2 26.8 ... 5 9.079057e+05\n","Duval County 143.0 29.3 ... 137 4.740938e+07\n","Flagler County 116.3 23.5 ... 16 7.243310e+06\n","Gilchrist County 96.2 26.8 ... 1 6.418368e+05\n","Glades County 77.1 22.1 ... 2 1.684916e+06\n","Hamilton County 57.7 17.0 ... 3 7.796505e+05\n","Hardee County 100.2 25.9 ... 3 6.791781e+06\n","Hendry County 115.1 27.8 ... 1 4.864095e+06\n","Hernando County 103.3 28.8 ... 12 6.987439e+06\n","Highlands County 100.2 25.9 ... 16 1.104181e+07\n","Hillsborough County 42.3 13.5 ... 234 4.139342e+07\n","Indian River County 107.0 24.0 ... 23 5.417251e+06\n","Lafayette County 57.7 17.0 ... 1 4.387254e+05\n","Lake County 101.7 25.4 ... 47 1.418739e+07\n","Lee County 101.2 22.7 ... 63 6.269670e+07\n","Levy County 96.2 26.8 ... 2 1.823098e+06\n","Manatee County 116.2 25.2 ... 33 1.369299e+07\n","Marion County 60.5 22.0 ... 30 1.934269e+07\n","Martin County 101.2 13.7 ... 22 2.936391e+06\n","Miami-Dade County 129.6 28.7 ... 730 2.417464e+08\n","Monroe County 129.6 28.7 ... 31 1.061900e+08\n","Nassau County 115.8 28.5 ... 16 4.184525e+06\n","Okeechobee County 77.1 22.1 ... 2 2.920370e+06\n","Orange County 107.1 25.5 ... 346 5.216380e+07\n","Osceola County 115.5 29.9 ... 50 1.244058e+07\n","Palm Beach County 145.0 31.0 ... 167 8.307278e+07\n","Pasco County 103.3 28.8 ... 58 1.824896e+07\n","Pinellas County 113.5 24.6 ... 159 5.632790e+07\n","Polk County 77.5 33.5 ... 116 4.351088e+07\n","Putnam County 160.0 35.5 ... 4 1.110617e+07\n","Sarasota County 160.0 35.5 ... 68 1.306549e+07\n","Seminole County 107.0 24.0 ... 81 2.173058e+07\n","St. Johns County 116.2 25.2 ... 34 1.862228e+07\n","St. Lucie County 107.8 25.9 ... 32 2.350643e+07\n","Sumter County 101.7 25.4 ... 7 3.424526e+06\n","Suwannee County 57.7 17.0 ... 4 2.045323e+06\n","Union County 87.2 21.4 ... 3 5.774985e+05\n","Volusia County 62.6 21.6 ... 51 3.782572e+07\n","\n","[49 rows x 16 columns]"]},"metadata":{"tags":[]},"execution_count":7}]},{"cell_type":"markdown","metadata":{"id":"Fg-Ticrhdpih"},"source":["## Feature Selection\n","\n","We have 15 features, but do we really need them all? Especially when we only have 49 data points. Intuitively, some of these parameters should be redundant; 6 wind parameters surely can be summarized by just one parameter. The following heatmap illustrates this intuition well."]},{"cell_type":"code","metadata":{"id":"B-5M2buOeaQV","executionInfo":{"status":"ok","timestamp":1603518988380,"user_tz":240,"elapsed":2442,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"253dbed1-de76-4c5e-df95-2e371597e692","colab":{"base_uri":"https://localhost:8080/","height":508}},"source":["plt.figure(figsize=(12,7))\n","sns.heatmap(df.corr(),\n"," annot=True,\n"," fmt = '.2f',\n"," cmap='coolwarm')\n","plt.show()"],"execution_count":8,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAuEAAAHrCAYAAABhM0NpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd1RUV9eHn2GAmaEJFkClSbP3FiuKiiUYTIwaY48xMdZoemI0msTyJpbYa+zd2HvvYBesgCK9CBbqdOb7YxQcZoAh8VW/vPdZi7WYe/c985t97p3Z95x99hXpdDodAgICAgICAgICAgKvDIvXLUBAQEBAQEBAQEDgfw0hCBcQEBAQEBAQEBB4xQhBuICAgICAgICAgMArRgjCBQQEBAQEBAQEBF4xQhAuICAgICAgICAg8IoRgnABAQEBAQEBAQGBV4wQhAsICAgICAgICPwrmTFjBoGBgVSvXp2oqCiTNlqtlsmTJ9OxY0c6derE1q1bzdr3T7F8aS0JCAgICAgICAgIvEF06NCBgQMH0q9fv2Jt9uzZQ3x8PIcPH+bp06f06NGDFi1a4ObmVuK+f4owEi4gICAgICAgIPCvpEmTJlSuXLlEm/3799OrVy8sLCwoX748HTt25ODBg6Xu+6cII+ECAgICAgICAgL/r8jKyiIrK8tou4ODAw4ODmVqKyUlhSpVqhS8rly5MqmpqaXu+6cIQfgbxD6r6q9bAr7veb1uCQB4Dnz3dUtA9zjjdUsAIDf6weuWgF3dWq9bAgB51Zu9bgloxdavWwIAIl3+65bAkcy3XrcEAN6WHX3dEsgXiV+3hDeGN+HcBNBZvP4QR6zOe90SALBv2u11S3jpMU7MrFHMnz/faPuoUaMYPXr0S32v/xav/wwVEBAQEBAQEBAQKAODBg3i3XeNB+zKOgoO+tHt5ORk6tWrBxiOfpe0758iBOECAgICAgICAgL/VURWopfa3t9JOymOLl26sHXrVoKCgnj69ClHjx5l/fr1pe77pwhBuICAgICAgICAwL+SX375hcOHD5ORkcGQIUNwdHRk3759DBs2jDFjxlC3bl1CQkIIDw8nKCgIgJEjR+Lu7g5Q4r5/ikin0+leSksC/xghJ7wQISe8ECEnvBAhJ7yQNyHvVsgJL0TICS/kTTg3QcgJf5E3ISf8oEPNl9pel6w7L7W918HrP0MFBAQEBAQEBAT+1YishKrYRRE8IiAgICAgICAgIPCKEUbC33A8R/TDbeB72NfxJ3nzXiKGflesbbWxg/D+chhiGxmp2w9xc+Qk8lVqAGSeVam/fBqOzeohj0/h5tgpPDoearYOC1t7XIePw7ZeY7TZmaRvXEn2uRNGdiJLK5wHf4Zd05aILC2RR94ibdlcNE8elamd4sjMVTBp82FCo+JwspUxpltrujWuUay9WqOl1+/ryFWqODJpWMH2KVuOcPl+EvEZT5jcJ4iQZrXN1yBX8tPeUEJjknGSSRkd2JBudaoZ2S06Fc6KczewEhdOU2/9JBg3J3sA7qY+ZvLeUB5kZFKtYjkmBbeghmt5szSIZLbYhQzG2rc2+Xk55B35C+WNCyZtxZU9sOvaF8vKHujUSvJO70cRVjh9L32rI7IWHbGwdUCb+YisDfPJf5Rmni/yFEzacZrQe4k42UgZE9SMbvV9i7VXa7T0WvAXuUo1R74ufHqZNj+fRceusPNqJLlKNe4VHFj+UTAOMknpGrJzmLpoNRcjbuFob8fwD3vSuU1zI7t1uw5y4NR5UtMfUc7envc6t6N/SJeC/Us27eT0xWvEJaUwuOfbfNw7xCwfPCcrO4dpC1ZwKfwG5ezt+bR/L4LatjSyu3rjNiu37iIqJhZ7W1u2LZllsD/6QRyzl6/lflwCNlIpIUHtGdy7h/kaFv7JxfCblLO3Z3j/9wlq08LI7sqNO3oND+Kwt7Xhr8UzDfbfuBvNHys3EJuYQhXninzxyUDq1/Qvgzf0hB5exdn9y1Gr5NRq0pngAT9haWWczpNw/zondswlOe4WFiILvGo0o+uHP2Dv6AzAiZ3zOLNvCWLLwmM/m7yL8s7F52Vm5uTyy5L1hN24i6O9LSM/eIcurZoa2a3dc5S9py+QmvEYR3s73u/UhgHdOxbsf2f0RB5nZmNhoV9UVs/fm/nfjzLbB5k5ufy6ZC0XIu7gaG/HiA9C6NzaOK1q7Z7D7D8VRmrGY8rZ29EzqC0DugcZ2V29HcVnU2Yz5N0uDO9j3jn6sjR8NmU2MQnJqDQaqlSqwCe9uxPQpH6ZfPHLkvVcuHEHR3tbRnwQUkyfHGHfsz4pV9AnnUz4IprhP89hSI8ufNanu/m+WLyGCxG39b7o+65pX+w+9MwXj575IoAB73QG4HFmFrNWbeHanSjkCiU+7lUZO7AXdfyMfwdK0vHzss2E3YzE0c6WUX3epkvLxkZ2a/YeZ+/ZS6RmPMHR3pb3O7RiYHAgAKkZT+j1zXQDe7lSxecfvkP/bu3N1vKqsLB8uQsz/w0IQfgbjjL5IfemLqRSUBssSghIKnZqjc9XnxAWNAhF8kOabJuP36QxRP6g/3FtuG4mT8Kuc7H7MJy7BtB481xO1gxClfHELB0uQ0ei02i490kfpF4+VP32Z5RxMagS4wzsnLr1QOpfk9ivh5Ofl4vLJ5/j/NEIkmf+XKZ2imPq9uNYWYo5MflT7ialM3r5TvyrVsTXtaJJ+1UnLuNkJyNXqTLY7l+lEp0bVGfO3jNmve+LTDtwESuxBcfH9SIy9QmjNx/H38UJ30qORrZBtbyY2qO10Xa1Vsu4LSf5sHkN+jSuzrarUYzbcpLdI0MMgvbisHu7H2g1PPrPOCxd3XHoPxZNagLa9GQDO5GNHeUGjCP34CaUt64gElti4eBUsF/SqA3SRq3JWvcH2vQULJwqoVOYn8M4dc85rMQWnPh2AHdTHjF67QH8Xcvj62L6ZmLV2XCcbKTkKtUG2xcdu8L1+DTWfBJCZUc77j18gsTSvBzbmSs2YGUpZt+yWUTHJvDFtLn4ebnh7V61iKWOiaOG4uPpRlJqOp//MguXiuXp1Er/A+zmWolRA95nx+FTZn9+Ax3L1mBlKWb3n/OJjo3j619n4evlgbeH4aONpVIJbwe2pWPrt1j71x6jdibPXkSb5o2ZN+V7UtPTGfH9L/h6edC6WSMzNKzF0tKSPSvmEh0bz1dTZ+Pr6YG3h6EvZFIJwYFtUKreYs12Qw1Z2Tl8PW0OX306iIDmTTh6Noxvps1hy8LfcLCzNdsf926e4ez+ZQz6ahX2js5smj+KEzvn0anXF0a2itwsGgf0pned1lhYiNm//md2/vk9A8YvL7Cp3bQrPT/5zez3/8+fW7C0tOTQ4mlExSby+X8W4efhho+74ZPzdDodk0cMxNejColpGYyeNh+XCo4EtWxSYDPzq09pXrf4m/2S+O3PTViJLTmwZAZRsYmMn7EAP083vN2LlDjTwaSRg/H1qEpSWjpjps7DpYITQS0Lg1SNRsus1Vup7ev1WjSMH9SLam6VsRSLuRn9gNG//sHW2ZOp6FTOTB2bsbIUc/BZn4z7zyL8PKriU0SHTgc/jRj4TEcGo6c911HYJxqNlplrtlKnrL5YsRErSzEHlv6m98X0eSX4Ygi+ns988esfuFQoT1CrpsgVSmr5ePL5wF44lbNn9/GzjJ8xj53zp2IjlZqlY8aqv7CyFHN4wRSi4pIY+/sy/Dyq4ONW5PxEx5RPP3x2fj5i1IzFuFRwpHOLRrhWdOLMihkFtkkPH/HuF78S2NT8G6NXycuujvJv4P9NOkpISAgKhaLMxwUGBhIVFVXs/jt37rB//36z2kpMTGTz5s1m2zZvbjwaV1ZSdx4hbfcxVI+elmjnNqAHCSu3kXP7HpqnWUT/uhC3Z4sbbf28cGhYm6jJ88hXKEndcZjsm1G4vtfZLA0iiQT75q3J2LIanVKBPPIWOZdDcWjTwcjWqpIreeGX0WY+RadWk33+FBI3zzK3Y4o8pZqjEdGM7NISG4k1jbyrElDbm72XTS/OSHyUyb4rdxnawXik5YPWDWju74G1VdnuQ+UqNUfvxjMyoAE21lY09HAmwM+NfTdiytTOpdg0NLp8+jeribWlmA+b1USHjouxZjyFy8oa61qNyT2+E1RKNPH3UN0NR9LAeMRT1jII1b1bKCMugFaDTqVAm5Gi3ykSYdP+HXIPbkabrt+W/yQdnTzXrM+Qp1Jz9PYDRnZsgo3EikZergTU8GTv9WiT9omPs9gXfo+hAQ0MtmfJlawLvcGkHm2p4mSPSCTCz6U8EjP6Rq5QciLsCp980AMbmZT6Nf1o06Q+B08Zz/L0D+lKdW9PLMViPKu60qZpAyLu3ivY/3a7VrRoWBcbM0bfTek4FXaJjz/s+UxHdVo3bcihU+eMbGv5+dClXSuquFQy2VbKwwyC2rZELLagqqsLdWv68yAhySwNJy9cZljf955p8Kd1kwbFaPAuVsONyHuUdyxHYMtmiMUWdA5oiaODPafCLpvhiUKun9tJwzY9ca7qh8y2HAHdR3D93A6Ttn712lK7aRekMjusJTKadehHQvTVMr3fi8gVSo5fvM7w3m9jI5XQoIYPbRvXZf/Zi0a2A9/pRI1q7liKxXhVcSGgcT3CI8t2PZek48SFa3zauzs2UikNavjSpnE9DpwxnrUa8E4QNap56M/PKq60bVKPiCI61u87SvN6NfGq4vpaNPh5umH5bJBAJBKh0WpJe2TeQM7zPvm0d3CBjraN63Kg2D55rsOFtib6ZP2+YzSvWxPPKi5l9MVVPu0dUuiLJvU5cCbM2Bchnanh/aIv6hMRqf++qOpSiQ+DO1HRqRxiCwve7dgWtUZLXLJ5M4hyhZLjlyIY/n5X/flZ3Zu2jWqz/6zxNTYouMML56czAY3rEB5lerH+vrOXaFjDhyqVzJtRFXj9/L8Jwnft2oXUzDvMsnDnzh0OHjxolm1SUpLZQfirxr62H1kRdwteZ0VEInWthFV5R+xq+SKPSUCbk/vC/rvY1yo+beBFrCu7odNqUacUBgLKuAdI3D2NbJ+eOIisem3ETuURWUtwaB1IzvXLZW7HFHHpT7C0sMDLuXAkt3qVStxPfWTSfvqOE4zu1sqsYM5c4h5nY2khwrNCYW1Sfxcn7qebvkk6HZ1I2983897i3Wy5Elmw/X7GU/ydnRCJCkcG/JyduJ+eWaoGcQVXyNcapIxo0xKwdDZ+eIClmzc6eS7lPv6O8l/PxqHfaCzK6b+gLRycEJcrj9i5Kk5f/IbTuOnYtA8BkXmjFXEZmVhaiPCqWDgDUL1yBe4/NP2jPH3feUZ3aorE0rA/olMfY2lhwZFbMQROX0v32ZvZFHbLLA3xKWmIxWI8XghKfL3ciUlMLuEo/ejn9TvRVCs6+vU3SUhOQWwhxqNK4SiWj6eHWcFzUXoHd+bgybNoNBrik1K4FXmPJvVKT5dKSE59puFFX/w9DUXR6SCmjO2kJ93D1b1w9NjFvQa5WRnk5ZQetMVFXqZSVT+DbVHhJ5g+ujkLJgRz6cTGEo+PT3mIWGyBZ+XCAM3PsyoxiSklHqfT6bh29z7eRUYjJ85fTadPvmXU1PlExSWWqr+oDo8qL+pwM0vH9bv3DHSkpD9iz4nzDO1ZtioXL1MDwPgZC2gzYDQfTZhBo1r+1PT2KJMOwz4xV8d9I1/sPhnKxz27mvXehRrSTPsiwYzvi7v3jEfLnxEVm4BGo8Hd1dksHXGp6c98UWjv71GVmKSSB2F0Oh3XImPwdjO+CdPpdOw7e5ngNsaDTm8KFpail/r3b+CNSEfZtGkTkZGRTJo0iYiICHr16sXWrVupV68eP/30EzVr1mTixIlcvXoVW1tbAgMDCQkJ4fz586Snp/PRRx/Rv39/AC5fvszkyZMBaNq0KSVVYHzy5Alz584lJyeHkJAQmjZtyoQJEzh9+jSzZs1Cq9VSvnx5pkyZgqenJ1OmTCExMZGQkBA8PT2ZO3cuM2bM4OLFi6jVapycnJg6dSpVqxadBv/vI7a1QZOZU/Bak5kNgKW9LZZ2tqizsg3sNZnZSKqaN4JgIZWRLzdMUcjPy8VCKjOyVackoX6Uju/ijei0WpTxD0j7c0GZ2zGFXKXCVmqYT2onlZBXJLUB4FjEPfLzdXSo58ulewlmtW8OeSo1thIrQw0Sa3KVGiPboFqe9GzkRwVbKTeSMvjyr9PYS6zpWqcacpUGO6N2rIzSNEwhkkjQKQ1nhfIVckTWxjepYgcnLCt7krV6JpqHidgG9cK+1ydkLp9ekJZi7VubpwsmIpLaUG7geLRZT1BeOV2qDrlKja2kSH9IrE33x+0H+v6oVY1LMYY/eGlZuWQrVMRlZLL/i77EP8rkkz/34VmxHC183YzaMtCgUGArM/zcdjYy8uQlz5ot37IbnU5HcPtWJdqZi1yhxNbG8Dy2sy1dhylaNmnAL3OXsGnXAbT5+Qzp3YOaft6lHpenUGBrY8IXZZxBrFPdl4zHTzhyJoz2LZpw+EwYSWkPURZJ6SoNlTIPicy+4LVUZgeAUpGLjZ1TcYeRmhDJqT0L6Tt6QcG22k270jigN3blKpIYE86WBWORyuyp+1awyTbylErj80JWen8s3bYfnU5H93aFpRd/HjWI6tXcQQcbD5xg9LQFbJv5I/a2NiW2Bc/6RFbkvDDj/Fy2bS/5+TqC2xXObs1ctaVgNLssvEwNALO+GYlGo+XijTvEJqdiYWHeWF7xfaIsRcc+8ov0yczVWxn+bES9LOQplKZ9oShFw9Y9z3xhvMYjJ0/OT/P/ZGjPYOxszPwtUyixM/rekpJbii+Wbj+ITqfjnbbGs+zXI2N4nJlNh2ZvZioKCOkopngjRsJbtGhBaKh++jg0NJSGDRsSFhZW8LpFC+NpdoVCwebNm1mzZg0zZ84kNzcXlUrFuHHjmDBhAnv27KFJkyYkJxd/h+vk5MSYMWNo2bIlu3btYsKECTx69Iivv/6a33//nT179hAcHMyXX34JwMSJE/Hx8WHXrl3MnTsXgGHDhvHXX3+xe/dugoOD+f3331+2e8xCm5uHpYNdwevn/2uyc9Hk5GJpb2dgb+lghzbbvLSDfIUcC5nhD46FjQ35CrmRrcvQUYgsrYj+6H2iB4aQc/Ecbt/9UuZ2TCGztiZXYRgI5ChV2BQJZvOUaubsPcM377Yzq92yYGNtHCjnqtTYSozvZ30qOeJsb4PYwoIG7s582LQGR+/GAyCztiTHZDtWRu0URadUIpIYfoFbSKToVMY/qjqNGtWdq2iSY0GjIe/Ebqw8/BBJZOjU+vfPO3sAnUJO/tNHKC6fwtqvbqka9J/ByijXPkepNu4PlZo5hy7wzdvGP2AAEiv99Pan7RshtbLE37UCnev5cDYqvnQNUim5RYKJXLkcG1nxP85bDxznwKlQZn43Bmur0v1tDjKphNw8w/M4N09Rog5TZGXn8MXPvzG4Vw+ObV7B9qVzuHDtBtsPlF4H20YqJTfPhC/KGKiUs7dj+rdj2bTnEMFDx3Lh2g2a1KtFpQrFB84AEaF7+PWzRvz6WSPWzRqGtcQGpbxwYECp0P8vkRafV/4oLY71s4fRte/3ePoX5v86V/XFwckFCwsxHr6NaN5xALevHCq2HRuJxMR5UXJ/bDl0iv1nLjL76+EG50X96j5Ira2RSqwZ0qMz9rY2XLt7v3hHvKhDKiVXXuS8KEXH1oMn2X/6ArO+GVmg48yVCPIUCjq9kBNtLi9Lw4tYWopp2bAOFyLucPpyuHk6TPaJvMT0ry2HTrLvzEVmf/3ZC764Qa5cSacWxosYS9UglRj7Ik+BjbR4DVsPnmD/6TBmfTvKyBcKlYov/7OAOn7eDH7X/FF5mVRCjonz07YEX2w+fIZ9Zy8z54thJtMo9565RGDTeiV+FoE3jzdiJNzT0xOlUklqaiqhoaGMGzeOxYsX0717d9RqNR4extNd3brpp+Tc3NxwcHAgNTUVtVqNTCYryMXu1q0bEydOLJOW8PBwatSoga+vPlWjZ8+eTJ48mZycHJP2p0+fZsOGDeTl5aHRGI+Gviqyb0XjUK86KdsOAOBQrwaK1HTUj5+Sc/seNt7uiO1sC1JS7OvVIHnTXrPaVqUkIhKLsXKtgjpVf1Mj8fRGmWC8mFLi5UPGplXk5+pH3p8c3EXFPoMQ2zuUqR1TeFZyQpOfT1z6Ezwr6QOCqOR0fFwrGNjFZzwh+XEWQ+ZvAfQVOXIUKgInLWHt2A+oWt68RUQmNZS3R5OvI+5xFp7l9SkpUWlP8DGxKLMoIhEFMzM+FR1ZG3YHnU5XkJISnfaUPk1Kf2CT9lEqWIixKO9M/uOHAIhd3dE8NL7h1KQWP3WufZSKTqOGFyaLyvLkLs+K5fS+yMjEs6Lep1Gpj/BxNgzW4h9lkvwkmyHLdwOg1ubr+2P6WtZ+2gN/F33/vZiaY+54iUdlF7RaLQkpabg/m+aOjk3E2830tPGe42dZu/MAi6Z8jXOFl5c36V6lMtp8LQnJqbg/Swe5FxtPNaPFoSWTnPYQCwsLurbXL+Z1rliejq2bE3Y1nPe6dizxWPcqriY0JJRZA0DD2jVY8Z9JAGi0WnqP+Iq+3buUeEy9Ft2p16KwQsW2JV+QlnCXOs30wUlqQiS2DhWLHQV/mpHEmt+H0Lb7COq3LLnqh0gkoqTHzHlUdkarzSc+5SEez6b8o+OTjFIrnrP7RCirdx9hycTPcSnlZkMEJc6wlqojLrEEHedZvfsQSyaNN9Bx6eZd7sTE0/XTbwDIzZNjYWHBvfhkfv/qs1eiwRRarZakNPMeamZKR1SJfXKeNbuPsGTiuCK+iOTug3i6DP8W0AfRFhYi7ick8fuXw0vR4PJMQxoez78v4hKLTTPZfeIcq3cdZMlPXxr5QqVW8/Vvi3Au78S3w/qZPL44PF0r6XWkpuPhql+XERWfjHdV07n+u05dYPWeYyz9cRQuFYx/axQqFUcvhvP75x+VScer5t+SQvIyeSNGwgHeeustTpw4waNHj2jevDnp6emcPHmy2MWNEknh3Z5YLEar1Zq0E5mZ3/p3SEpKYtq0acycOZO9e/cydepUVKqyTdmWhkgsxkJijUhs8cL/xlUjktbtwm3I+9jV9MGynD2+339G4hr9Iqjc6Fiywu/g/+NILCTWuIR0xKFudVK3Fz+S9CI6pZLsi+eo2HsgIokEWfVa2DVpQdaZY0a2ivtROLTtqB/xFotxDOqO+nEG2uysMrVjChuJFR3q+rLwYCh5SjXXHiRx8uZ9gpsYPoXL17UihyZ+zJYv+rPli/5M6tOJCvY2bPmiP66O+ulxtUaLUq0BnQ6NNh+lWkN+fuk/rDJrKzrUcGfRyXDkKjXXEh5yMiqBt+sapwuciEwgS65Ep9NxIymDDZfu0s5fX1KtqZcLYpGIDZfuotJo2XRJn8/fzMuMBVdqFao7V7EN7AFW1lh6+GJdowHK68aLEZXXzmJdsyFiV3ewEGMTEIw6LgqdUg5qFcqbl7Bp3QWRtRQLByekjduiijJzZMvaig61vFh47DJ5KjXX4lI5eSeW4AaGuby+zuU59FU/tozsyZaRPZnUoy0V7GRsGdkT13K2uFdwoJGnK8tOXkWl0RLz8AkHb9ynbfXS1wrIpBLaNW/Ess27kCuUhN+N5syl63QJMJ49O3QmjMUbtjP3x3FUNbEgUaPRoFSpyc/XodXmo1Sp0WrNe/KfTCohoHkTlm/ajlyhJOJOFGcvXaVzgHG6S35+PkqVCo1Wi06nQ6lSoVbrb+Ddq1QGHRw+fZ78/HwePXnKsXMX8PEsPe9Wr6Exyzft0Gu4G82ZS9fM0ICBBoComDg0Gg25eXLmr96Ec4XyNG9o3gzJc+q37MHVM3/xMOke8rwsTu9ZRINWpp+Em/UkjdW/DaZZh340bf+B0f67144hz81Ep9ORGBPBhaNrqdEwsERftG9WnyVb9+nPi8j7nLocQTcTpegOnL3Egs27mf/9KNxcDKsspWY8JjzyPupn58baPUd5mp1L/eqlpwc919GuWQOWbt1ToOP05XC6miihefDsRRZt2sW8H8YYnZ+f9n6HbbN/Yt2M71k343vaNK5HSGArfvxs4CvTEJuUyvlrN1GoVGg0Wg6cucC1O/doWMvPqJ3idLRv1oClW/e+oCOCrib65ODZiyzcvJt534+mapE++bR3MFtnTWTd9O9YN/072jSuq/fF8AFm+qIhS7c888Xde5y+fJ2ubYyf/HrwzAUWbdzJvB8+N/KFRqPlu1lLkFhbMXHkYLNTcgx80bQei7cdQK5Qcj0qhlNXbtKttfFMx4FzV1i4ZR8Lvv0MN2fTVcBOXr6Bg62MJmau83pdiMSil/r3b+CNeWz9rl27+OOPP2jdujVTpkxh4sSJnD17ls8//5x33nmH6tWrG+SEL168GH9/fd3a56+9vLzo2LEjs2bNokmTJhw8eJCxY8eyZ8+eAtuiHD58mI0bN7Jy5UoAHj9+TLdu3Vi/fj0+Pj789ddfbN68mS1btnDr1i3GjRvH4cOHAYiMjGTo0KEcPXoUa2trvv32Wy5fvszx48dJTEykZ8+eXLhgunazKUw9tt7vx1H4TxxtsC1qyjwSVv1FQMQ+TtV7G0WCfmFLtc8H4/PlMCxkUlJ3HOLmiCJ1wldMw7FZfX2d8DGTTdYJL+6x9Ra29rh+Nh7buo3Q5mSRvuFPss+dQFajDm7f/UL0IH0dYws7e1yGjMCmbiNElpYoE2JJX7MUxf3IEtspSnGPrX+xTrijjYyxb+vrhF+NSWTE0p2ETTeu33vpXgLfrz9oUCd86IKtXL5vOEq8fMT7NPUtrDtc3GPrM+VKJu05T9iDFBxlEsYENqJbnWpcjU9j5MbjhH7TF4Bvt58h9EEyKk0+Lg429G7sz4fNCm8YntcJj3lWJ/ynYuqEm3psvUhmi12PIVj71DKoE27p6Ue5/p/z6NeRBbbSpu2QBQQjsrJGEx9Nzp515GfpF8eJJFLs3hmElX89dIo8FFdOIz9pXDavuMfW6+uEnyL0XhKONhLGBjWnW31frsamMGLNAcImGo/MXIpJ5vttJwzqhKdl5YqH/6kAACAASURBVPLTjlNci0ulvK2MIW3q06uZ8Xuaemy9vk74Ki5G3KacnR2f9dPXCb9+J4rxv/7B8XX63OL3RnzLw8dPsH5hYWjntm/xzSf6H++f5//J/lPnDdqeMGIIbxfJGy/usfX6OuHLuRR+Ewd7O4b3701Q25aE347ky19+58iGZQBcvXmHMROnGRzboHYN5v/8PQBXbtxm0ZrNJKSkIrG2plWTBowd2h+pxHCa2dSjwbOyc5i6YAWXIm5Rzt6O4f17EdSmBddvR/Llr7M4un5JgYbRk2YYHNuwdnXmT9E/h2DSrEWEXosAoHmDuoz/uD9O5RwoSmmPrT9/aCXnDixHrVJQq3EQwQMnF9QJXzAhmDZvf0q9Ft05uWs+J3fNx0pimK72wyJ9hZRti8dz/9Y5NBo1Dk4uNG3fl7c6FQagph5bn5mTy89L1nPhxl3K2dkyqq++Tvi1u/cYO30hp1fp67OHjJlEWpHzomvrpnz3cV/uJ6QwYd5KEh9mILGyxM/TjdF9Q6jlY3yDWNxj6zNzcvll8Vou3rhDOTtbRvbtQefWzbh2J5px0xdwcvUcAHqMnvDs/CxMeejSphnffvyhUZtTFq7GuYJjmeqE/1MND5JS+HnhGh4kpWBhYYG7qzODe3ShXbMGRu9X3GPr9X2yjovP+mRk35CCPvl8+gJOrZoNQMiYiUbXapfWzfju475GbU5etAbn8k4m64Sbemx9Zk4uvyxaXeiLD98r9MW0eZxco0817THqexO+aM63w/rpa7VPnonE2goLUWEAPvu70TSsaXhTUtxj6zNzcpmybBMXbkZRzs6G0X2C6dKyMdfu3mfMb0sLSg++M+5n0h4/NTw/WzXm+496F7weNWMxtb09+KxX8Yt234TH1p+u0/Clttf25rWX2t7r4I0JwtPS0mjbti1z5syha9eu7N+/n3HjxnHmzBmcnZ3NCsL9/f2NFmaeOHGCJUuWFBuEZ2dnM2zYMPLy8mjWrFnBwszZs2ej0WgMFmZqNBpGjhxJUlIS3t7ezJ07l19++YXjx4/j5OREQEAAO3fufKlB+KumuCD8VVNcEP4qKS4If9WYCsJfNcUF4a8aU0H4q6a4IPxVU1yg8yopLQh/VZgKwl81xQXh/4u8CecmmA7CXzXFBeGvmjchCD9bv/RnHZSF1uF/v4zpm8IbE4QLCEH4iwhBeCFCEF6IEIQX8iYEOkIQXogQhBfyJpybIAThL/ImBOHnGpZ9MW1JtLp25aW29zp4/WeogICAgICAgIDAvxqR+I1ZhvjG8D8ThL/33ntGizfr16/PlClTXpMiAQEBAQEBAQGB/1X+Z4Lw7du3v24JAgICAgICAgL/k1j8SyqavEz+Z4JwAQEBAQEBAQGB14PIQgjCiyIk6AgICAgICAgICAi8YoSR8DeIN6Eyyb3tsa9bAgDuoyqUbvRfRvSGVEex9av2uiWApGyPPv9vkW3j/LoloBK9Gb5wVKS+bgl4OOW+bgkAJEtqlm70X6a88vX3B4ClVlG60f8IQsWaNwshHcUYIQgXEBAQEBAQEBD4r/Jvecrly0RIRxEQEBAQEBAQEBB4xQgj4QICAgICAgICAv9VRBbCuG9RhCBcQEBAQEBAQEDgv4pQHcUY4bZEQEBAQEBAQEBA4BUjjIQLCAgICAgICAj8VxGqoxgjBOH/D7Cwtcd1+Dhs6zVGm51J+saVZJ87YWQnsrTCefBn2DVticjSEnnkLdKWzUXz5FGZ2jGF54h+uA18D/s6/iRv3kvE0O+Kta02dhDeXw5DbCMjdfshbo6cRL5KDYDMsyr1l0/DsVk95PEp3Bw7hUfHQ832RWZOHpNX7yD01j0c7WwY0zOIrs3rG9mtO3yOTcfDeJqTh0xiTeemdfm8V2csxWIeZ+Xwn037uBIZi0KlwqeKC1/06Updb3fzNMiV/LQ3lNCYZJxkUkYHNqRbHeMygotOhbPi3A2sxIVlsrZ+Eoybkz0Ad1MfM3lvKA8yMqlWsRyTgltQw7W8+b54A3Rk5imYtOUooVHxONnKGNOtJd0aVi/WXq3R0mv2BnKVKo5MGApAbPoTZu89S3hcCtp8HbXdXfg2JAAvZyezNGRlZzPrj3lcuXqNcg4OfDR4IIHtAozsrodHsH7jZqLv38fezo61K5cb7F+1dh3nQy8Qn5DAhx/0ZmC/D816/+dkZ2fxx5xZXLt6BQeHcgwa/BHt2gca2el0OlatXMHhQwcACOrclcFDhiIS6X+gtFotG9at4ciRQ8jlcipXrsLU6b9hZ2dnhi9ymLZgBZfCb1DO3p5P+/ciqG1LI7urN26zcusuomJisbe1ZduSWQb7b9yNZu6f64lNTKaKSyXGfzKQ+jWL79fiOLx7Pft3rEalVNCkRQcGDP8OKytrk7a3Iy6ybul0Hqen4u1fh49GT6aic2UAcrIzWbtkGrfDLyISQZ2GLRjw6XfIbIr3SXZ2FvPm/M71q1dwcHBgwOCPCWjfwchOp9OxZuUyjhzaD0Cnzt0YOGRYQX885/ixw/wxcwYjx4wnqMvbZvsgKzuH6QuWcen6Dco52PFp/z50atvKyO7qjVus2rKjoE+2Lv2jYF9aegYDxnxtYC9XKBk5+EM+CCldS2Z2DlMXreJi+C0c7e0Y3q8nndu8ZWS3btdBDpw8R2r6I8o52PNe5/b0D+lSsH/Jxh2cvnSNuMQUBvcM5uM+IWb74WXqSHmYwS8L/uRW9ANcKpbni4/70axeLbM0ZGXnMG3hn1wMv0k5e3uG93+foDYtjOyu3Lijv0YexGFva8Nfi2ca7L9xN5o/Vm4gNjGFKs4V+eKTgdSv6W++L3Jy+XXxGi5E3MbR3o4Rfd+lc+tmRnZrdx9i/6kwUjMeUc7ejp5BAQx4p3PB/s8mzyQmIRmVRkOVShX5pHd3Apo2MFvHq0RIRzFGCML/H+AydCQ6jYZ7n/RB6uVD1W9/RhkXgyoxzsDOqVsPpP41if16OPl5ubh88jnOH40geebPZWrHFMrkh9ybupBKQW2wkEmKtavYqTU+X31CWNAgFMkPabJtPn6TxhD5g/4LrOG6mTwJu87F7sNw7hpA481zOVkzCFXGE7N8MW3DHqzEYo7N+pbIhBTGzF2Lv5srPlVdDOwCGtQgpHUj7G1kZObk8dXijWw8FsaAoFbkKVXU9nLji97dKO9gy84zVxgzdy37pn+BjbT4z1ag4cBFrMQWHB/Xi8jUJ4zefBx/Fyd8Kzka2QbV8mJqj9ZG29VaLeO2nOTD5jXo07g6265GMW7LSXaPDDEIlt90HVN3nMTKUsyJSR9zNzmD0X/uxr9yRXxdTdd5X3XqKk62MnKVqoJt2XIlAbW9mdKnEzYSK5YcucjYVXvZ9fUAs/wwf+FirCwt2bJ+DfdjHjDhpyl4V6uGl6eHgZ1UKqVzUEfaKduwacs2o3aqVK7Mxx8NZt/+A2a9b1EWLZyPlaUV6zZsISbmPpMnTaCatzeenl4GdgcP7CMs9DzzFiwGRPz4w7e4uLjS7e1gADasW8OdO7f5feYfVHJ2Ji4uFmtr04FrUWYuW4OVpZjdf84nOjaOr3+dha+XB94ebkV8IeHtwLZ0bP0Wa//aY7AvKzuHb6bO4svhQwho3oSjZ0P5ZupstiyaiYOdrdn+uHntPPu3r+KrKYtxLF+J+dO/ZOfGxfQaOMbINjvrCQtmfMngET/SoGlbdmxYxOKZ3zJhxmoAdmxYSF5OFv9ZshudTseC/3zNrk1L+eCj8cW+/5KFc7G0tGL1hm08iLnHz5N+oJq3Dx5F+uPQgb2EhZ5jzoJliICJP3yNs0tlur7dvcAmJzubbZs3GB1rDrOWrsLKUsyulQu59yCOr3/9DV8vT6oV7ROJlG4dAujYpiVrt+0y2OdSqSKHN/5Z8Do57SF9R4wnoIVx0GaKmcvXY2Vpyb7ls4mOTeCLaX/g5+WOt3tVQ0OdjomjP8bH042k1HQ+/3kmLhWc6NS6OQBulZ0Z1b8XOw6fLLMfXqaOiXOWUMffh5nff07otQh++H0hW+ZNw6mcfekalq3F0tKSPSvmEh0bz1dTZ+Pr6YG3h6EGmVRCcGAblKq3WLPd+Br5etocvvp00LNrJIxvps1hy8LfzL5GfluxEStLMQeW/kZUbCLjp8/Dz9MNb/cqRXwBk0YOwdezKklp6Yz59Q9cKpQnqFVTAMYP7kM1t8pYisXcjH7A6F9ms3XOz1R0KmeWDoHXi5AT/oYjkkiwb96ajC2r0SkVyCNvkXM5FIc2xiM6VpVcyQu/jDbzKTq1muzzp5C4eZa5HVOk7jxC2u5jqB49LdHObUAPElZuI+f2PTRPs4j+dSFuA98FwNbPC4eGtYmaPI98hZLUHYfJvhmF63udS2zzOXKlimNXbjOiR0dspBIa+nkRUL8Ge0OvG9m6O1fA3kYGgA4QiUQkPNTPCLhVKs+AoFZUcrRHbGFBz4CmqDVaYlNLfziPXKXm6N14RgY0wMbaioYezgT4ubHvRoxZn+E5l2LT0Ojy6d+sJtaWYj5sVhMdOi7GmvfAjzdBR55KzdEb9xjZ+S1sJNY0qlaFgFrV2Hv1rkn7xMeZ7Lt6l6GBTQy21/Vw5b1mtSlnI8VKLGZA24bEpj/haa68VA1yhYKz50MZNKAfMpmMOrVr0aJ5M44dN57hqVHdn46B7ans6mqyraCOHWjWpDEymazU9y2KQiHn/Lmz9B8wCJlMRu3adWjevAUnjh8zsj127CjvvteTihUrUbFiRd59ryfHjh4G9MHerl07GD12HM4uLohEIry8qpkVhMsVSk6FXeLjD3tiI5NSv2Z1WjdtyKFT54xsa/n50KVdK6q4VDLadyMymvJOjgS2bIZYbEHngFY4OthzOuxymXxy7sRe2nQMoaqHD7Z2DnTv/THnTuw1aXsl7ARV3H1o2qoTVtYSQj74lITYaFISHwCQnpZMw+btkNnYYWNrT6Pm7UlKuF/seysUckLPnaHfgMHIZDJq1a5Ls+YtOHH8iJHt8WOH6fFeLypWrESFipXo8V4vjh89ZGCzZtVygt95FweHsgU2coWCU2EXGdq3FzYyKfVqVadV00YcOnnWyLaWvw9d2rWhikvpD6Q6dPIM9WvVoLKzcf8Za1By4sIVPvmgx7Pzwo82Tepz8JTxDGT/Hl2p7u2JpViMZ1VX2jRtSETkvYL9b7drRYtGdbGRlf2BVS9LR3xyKpEx8XzcJwSpxJr2bzXBx8ONE2FXzNJw8sJlhvV975kGf1o3aVDMNeJdwjVyj/KO5V64Rlri6GDPKTOvEb0vrvJp7xBspFIa1PClTZP6HDgTZmQ7IKQzNbw99L6o4krbJvUN+sTP0w3LZwMmIhFotFrSHj02S8erRmRh8VL//g38v/gUISEhKBRlfwpYYGAgUVFR/wVFxTNgwABOnDAvxcMcrCu7odNqUackFWxTxj1A4u5pZPv0xEFk1WsjdiqPyFqCQ+tAcq5fLnM7/wT72n5kRRQGYVkRkUhdK2FV3hG7Wr7IYxLQ5uS+sP8u9rV8zWo7Li0DS7EFnq4VC7b5u1cmJvmhSfsDF8JpPepn2n8+laiEVHoGNDVpFxmfglqjxd259Kd0xj3OxtJChGcFh0INLk7cTzd9c3I6OpG2v2/mvcW72XIlsmD7/Yyn+Ds7GUx5+zk7cT89s1QNb4qOuPQnWFpY4FWpMG2keuVK3E99ZNJ++s5TjO7SEolVyRNwV2KSqGhvg6Nt6cFwUlISYrEFblULR7G8q1UjNj6+1GNfJnodYqq6FY5uVvP2Ji4u1sg2Pi6WatW8C+2q+RAfr5+Nio19gFgs5tzZM/Tv14dPPh7C3j27zdKQkJyC2EKMR5XKBdt8PD14kJBUwlHFoNMZbYqJTyxTE0kJMbh7FU7Pu3v5kfX0ETlZxudocvx93L38Cl5LpDKcXdxIStDfVAZ27UX45bPk5mSRm5PFldBj1G1knNJR0F5SIhZiMVXdClPMvLx9SDDRHwlxcXhV8ym0q+ZDfHyhXVTkXe5FR9GlW3ejY0sjITlV3ydVC/vE18uTBwll8+WL6HQ6Dp44S5f2bcyyj3+uoUrhzaevpzsxCcmlvs/1O1FUc6taop25vCwdMQn6FCnbF26Wfb3ceZBY+nmeYEqD19+8Rox0QoyZ7cSnpCEWW+BRpXAG18/TzTxf3L1nNFo+fsZ82vQfyUc/TKdRLX9qer/c3/WXhchC9FL//g38v0hH2bVrV+lG/1IspDLy5XkG2/LzcrGQGgco6pQk1I/S8V28EZ1WizL+AWl/LihzO/8Esa0NmsycgteazGwALO1tsbSzRZ2VbWCvycxGUiSVpDjyFCpsi6SL2Mkk5CqUJu27Nq9P1+b1iUvLYG/odSo4GOeP5sgVTFixjU/eaY+9TemjO3kqNbYSK0MNEmtylRoj26BanvRs5EcFWyk3kjL48q/T2Eus6VqnGnKVBjujdqzIVapL1fCm6JAr1dhKDEdo7WTW5Jk49tiN++Tn6+hQ14dL94sPQNKeZjN1x0m+7G5egCGXK7CR2Rhss7W1QS4vfRT9ZSKXy5HZGOqwsbU1qUOhUGBja2tkp9PpyMjIIDc3l6SkRFb8uYbk5CR++O4bqlatSsNGjUvWoFBia2N4PdvZysiTl20Ao051XzIeP+XImVDat2jKkTOhJKU+RPFCCpE5KOV5Bjnbz/9XKPKwczBMmVIo5NgX2SaztUMh19+we/rURKNRM2agPse+Zr1mBHbpVex7y+VybGyKnhfF9Ycc2xf6w9bWFsWz/sjPz2fxgj/4dMRoLP7GyJtcoTDqE1ubsvfJi0TcieRJZibtWjQ3U4MS2yLfbXZmaFi+ZRc6nY7gwOJvdsrCy9IhVyiwK3qe28hIf1x6SmOeQmFaQxkH+fTXyBOOnAmjfYsmHD4TRlLaQ5RmXiN5CqXBTUShDtO/Zc9ZtnUP+fk6gtsZrvOY9c0oNBotF2/cITYp5W+dqwKvh9feU5s2bWLy5MkAREREUL16dSIiIgD46aef2Lx5M9WrVyc3V/9lHBgYyB9//EGfPn0IDAxk3bp1BW1dvnyZ7t270717d6ZMmYLOxGjOi2zfvp0hQ4YwfPhwunXrxsCBA0lLSyvYv3TpUt5//33effddhg8fTnp6OgChoaH06dOHHj160L17d/bt22ey/X379tGzZ09SU81LMTBFvkKORZEgw8LGhnyF8Y+Jy9BRiCytiP7ofaIHhpBz8Rxu3/1S5nb+CdrcPCxfCHaf/6/JzkWTk4ulvWEgbOlghzY7F3OwkVobBdw5cqVRYF4UT5eK+FRxZto6w7w+hUrN2HnrqOvtxtBuxgv5TGqwNg5Qc1VqbCXG97M+lRxxtrdBbGFBA3dnPmxag6N39SO0MmtLcky2Y2XUzpuqQyaxMsjtBshRqLApcmyeSs2c/Wf5JqRkHz/OyWP4sp30aVmPriUs7jTQIJOSV+TmMi8v72+llPwTZDIZ8jzzdEilUvJesJXn5SKTyRCJRFg/u6np27c/EomEatW8aRvQjsuXL5auQSohN8/wes7NU5Q5daCcvT3TvvuczbsP0v2j0YRdu0GTerVxrlDyQtnQU/v5rG9rPuvbmllTRiOR2SCXF96QK/L017lUamN0rFQqKwi4nyPPy0Eq0wfHi377BtcqHizccIYF60/j7OLG0jkTitUik8kMfAyQ98zPpt77Rdu8vDykz/rjwL7deFXzpnoN8xb9GemQSo36JE8u/1vpHM85cOIMAW81M7sN/XlhGGTmyks+L7YeOMaBU6HM/H4s1lbmfSe9Kh0yqZTcIjdTuWb61EYqNaFBjo20rNeIHdO/HcumPYcIHjqWC9du0KReLSqVco0U6pAYf4Y8RYlrkrYePMH+02HM+naUyT6xtBTTsmEdLkTc5vTl8DJ9nleFhVj0Uv/+Dbz2ILxFixaEhupzwkJDQ2nYsCFhYWEFr1u0MF61rFAo2Lx5M2vWrGHmzJnk5uaiUqkYN24cEyZMYM+ePTRp0oTk5JKndgCuXLnC119/zf79+2nWrBm//voroB99T0hIYMuWLezYsYO2bdsyffp0AGrVqsWGDRvYuXMnK1euZMaMGWRmGk7fL1u2jK1bt7Jq1Spci8lBNQdVSiIisRgr18LpJ4mnN8oE48WUEi8fsk4dIT83G51GzZODu5D51UBs71Cmdv4J2beicahXGEA51KuBIjUd9eOn5Ny+h423O+IXFq7Y16tB9u17ppoywtOlIhptPnFphbnbUYmpeFcpPYdSq80nIb0wT06l1jB+wXpcnByYMMD8Ff6e5e3R5OuIe5xVqCHtCT4mFkMWRSSi4MbQp6Ij0Q+fGtwoRqc9xaeSeTmnb4IOz0pOaPLziXshBSYqOQOfIosy49Ofkvw4myELtxE4eTnjV+8jIyuPwMnLSXqmPytPwfBlOwmo7c2wDqbThkxRtWpVtNp8kpIKr/WYB7F4eXiUcNTLR69DS1JS4XT0g5gYo0WZAB6eXjx4UJi7H/MgBg8P/fRxQZrKC+lBIjN/a9yrVEabryUhufCm/15sPNWKLnozg4a1a7D8t8kcWLOIH8d+SlxSMjX9vEs8pkVANxZtPMuijWcZP3EeVd29SXgQXbA/ITYKB8cKRqPgAFU8fEiILbRVKuSkpyZS1d274NiAoJ5IpDKkMhvadenJjavGebwF7VV1I1+rJTmpcNblQUwM7ib6w93Tk9gHhfnlsQ/u4+Ght4u4fpWw0LMM6vc+g/q9z907t1i5fAlLFs4t0RcFbVdxLaZP3Eo4qniUShUnz18wOxUFwOO5hpTCAabo2ATjBYDP2HPsDGt3HGDepC9xrmB+taZXpcPbvQrJaekGQey92ASz0mZM90fC375GVvxnEgdXL+DHsZ8Qn5RCLd+Sr5HneFR2QavNJ/5FX8QlFuuL3SfOsXrXQRb8OA6XUgJ9rTafpLR08z/IK0RIRzHmtQfhnp6eKJVKUlNTCQ0NZdy4cYSGhpKSkoJarcbDxI9pt27dAHBzc8PBwYHU1FRiYmKQyWQ0b968wMbevvSV0o0bN8bbW3/h9OrVq+AG4Pjx45w/f553332XkJAQNmzYUPAD+/jxY8aMGUNwcDBDhw4lMzOTBw8eFLQ5b948wsPDWbp0qVkaSkKnVJJ98RwVew9EJJEgq14LuyYtyDpjvOBLcT8Kh7Yd9SPeYjGOQd1RP85Am51VpnZMIRKLsZBYIxJbvPC/cfWMpHW7cBvyPnY1fbAsZ4/v95+RuGYHALnRsWSF38H/x5FYSKxxCemIQ93qpG4/ZNSOKWQSawIb1WLRrmPIlSquR8dx6vodglsYl2Pafvoyj7P0o3D3kx/y54HTNKup72e1RstXizYisbJiykc9yzR1J7O2okMNdxadDEeuUnMt4SEnoxJ4u67xl++JyASy5Ep0Oh03kjLYcOku7fz1OapNvVwQi0RsuHQXlUbLpkv6PPpmXubdsL0JOmysrehQx4eFh8PIU6m59iCZk7djCG5Uw8DO17UCh34YwpZxfdkyri+TenWggr0NW8b1xdXRjhyFkuHLd9HAqwqfdyvb1LdMKqVVyxasXrceuULBrdu3OR92gQ6B7Y1s8/PzUalUaLRadDodKpUKtbpwFkCj0aBSqdDpdGi1elutVmuWDqlURouWrVi/bjUKhZzbt25xIew87QONFz4HBnZk546/yMjI4NGjR+zc/hcdOgYBULlyFWrXrsOWzRtQq1UkxMdz+tRJmjYzLuNm7AsJAc2bsHzTduQKJRF3ojh76SqdA4x9mp+fj/IFXyhVKtTqwlSmqJhYNBoNuXlyFqzaiEuFCjRvWM8sXzynZbtgzhzbRVJCDHm52ezZuoJW7YNN2jZq3p6k+HtcDj2GWqVk95ZluHn5UdlNX3Kzmm8tzhzdiUqpQKVUcOrwdtw8/Uy2Bfr+eKtlazasW4VCIefOrZtcDDtP+8BORrbtA4PYtWMbjzLSefQog53btxLYUb9YfMz4b1iweCVz5i1lzryl+Pj588GHA+g/6COzfCCTSmn7VlNWbNyGXKEg4k4kZy9eoXM740pFBX2i0aDDuE8ATl+4hL2tLY3qmj8yL5NKaNesEcs27USuUBJ+N5ozl6/TJcB4gOvQ6TAWb9zO3InjqWpiQaJGo0GpUpOv06HN16JUqdFq81+pDo8qrvh5ebBiy26UKjUnL1zlXlwi7d8qOV3ruYaA5o1ZvmmH/hq5G82ZS9fMuEYwcY3EFVwj81dvwrlCeZo3rFsGXzRk6ZY9z3xxj9OXr9PVRLnGg2cusGjjTub98LmRL2KTUjl/7SYKlQqNRsuBM2FcuxNNwzKUShR4vYh0peVsvAK+++476tWrx4YNG9izZw/BwcH069ePiIgIpk2bRvXq1bl69Sq2trYEBgayePFi/P31J9nz1/n5+YwZM4bDhw8XtNu0aVPWr19fYFuU7du3s2fPHlauXAlAWloa3bt35+LFi4wZM4a2bdvy/vvvGx03aNAgAgMDGThwICKRiM6dOzNlyhSaN2/OgAED8PPz49y5cyxZsgQvLy+z/RDZx3SVEAtbe1w/G49t3UZoc7JI3/An2edOIKtRB7fvfiF6UA+9nZ09LkNGYFO3ESJLS5QJsaSvWYrifmSJ7bzIve2xJjX4/TgK/4mjDbZFTZlHwqq/CIjYx6l6b6NISAGg2ueD8flyGBYyKak7DnFzRJE64Sum4disvr5O+JjJJuuEtz/+i0kdmTl5/LRqB2G3DeuEX42KZdQfazi/YCIAk/78i7M3oshTqnCyt6VTkzqM6NEBiZUVlyMfMOy3FUitrQwWJM4fO5BG/l4Fr0WxkUXfXq9BrmTSnvOEPUjBUSZhTGAjutWpxtX4NEZuPE7oN30B+Hb7GUIfJKPS5OPiYEPvxv582KxmQTvP63PHPKvP/dPfqBP+qnSIypkefXmxTrijiKp+SQAAIABJREFUrZSx3VrRrWF1rsYkMWLFbsJ+/czomEv3E/l+46GCOuG7L9/hx81HkFpZGvTHji/7U9nJ8CY2rVZHo/aysrOZOWcuV69dx8HBnqGDBxHYLoAbN2/xw6TJ7P5rCwDhETf46rsfDI6tV7cOv0+fCsBvs+Zw5Nhxg/1ffj6WoE6GgbRKZHrqOjs7iz9mz+Tatas4ODgwaPBQ2rUP5ObNG/w08Qe2bdcvsNTpdKz8czmHDx0EIKhzF4Z89HHBZ8/IyGDuH7O4fesm5Rwdef/93nTtZhy8OiqM09z0dcKXcyn8Jg72dgzv35ugti0Jvx3Jl7/8zpENywC4evMOYyZOMzi2Qe0azP/5ewAmzVpI2FX9lHbzBnUZ9/FAnBwdKEqUqLZJXzzn0K51HNixGpVKSeMWgQwc/n1BnfAJY3rxds8htAjQD6rcCr/A+mUzeJSeirdfHYaO+YmKzvqRwfS0JDYs/417dyMAHdX8atPv469xqaIfpKkgMV7smZ2dxbzZv3H92lXsHRwY+KxO+K2bEUyZ+B2bt+vTCHU6Hav/XMqRZ3XbO3XuyqCPPjGqEw7wwzfjCWjfwWSd8PJK02mHWdk5TJu/lMvP+2SAvk54+O27fPXzfwpKD167eZsxP/5qcGyD2jWZ90th2s34ydOp5efDxx8Wnw9vqTXOb87MzmHqwpVcjLhNOXs7PntWn/v67SjGT53D8XULAXhvxDc8fPQE6xcWT3du8xbffDoQgJ/nr2D/yfMGbU8YOYS32xvfVJjiZelIeZjB/7F33nFNnV0c/5IwkrBEGcoGUcRtnSjuvX1RW2sd1Wpbt9a+tlXrqtVaq7hr3VWrdVTFvffCVTcOZE8FlZkBIe8fQSAmQLRWedv7/Xz4fJJ7z33uL89zE849z3nO/W7JGu6EhVPevizjh/QzWCc810Q/UJSWnsGspau5fPMOttZWfN6vN+2a+nP97n2+/H4+R3/7BdB+R0ZNnaNzbJ1qviyZoX1GxtT5P3PhT23qbMPaNfhiSD/sbPW/I6Y5hvO8UzMymfnzr1y6FYqtlSUj+gbSPqABf4Y+ZNzsxZxcr51t6TFyIo+fPsPctCAFpUPThnw99CMiYhP47ud1RMRq88Ddyjvy8X860qJBHb3zlandwqCOt0loT/2b4L+C3x/61Y7+3ygVTnhwcDALFy4kICCAGTNmMGXKFM6ePcvYsWPp1q2bUU64p6cnbdq0Yf78+dSrV4+DBw8yZswY9uzZU6wTPn36dIKDg/H09GTZsmXcu3ePRYsWsWvXLtavX8/atWuxtbVFpVIRHh5OlSpVCAwMZPjw4bRp04Zz587xySef8Ouvv+Y74YMHD0YikTB16lSWLl1KpUpFR2wKU5QT/jYpygl/2xTlhL9NinLC/40U5YS/bQw54W+bopzwt40hJ/xtU5IT/rYw5IS/bYpywt82hpzwfyuGnPC3TVFO+NumNDjh93q3e6PtVdl2uGSjUk6pqI7SqFEjJkyYkJ//3ahRI7Zs2UKjRiVPwb7A3Nyc+fPn5y/yrF+/Ps7OhvOrCvPee+8xZ84coqKisLe3Z+7cuQD06NGD58+f069fP0AbLfnwww+pUqUK48ePZ/r06SxevJgaNWrg66u/iMzf35/Zs2czbNgwFi1aRNWqr7ewR0BAQEBAQEBA4J9HqYiEvyt27NjByZMnWbTIuEU2fzdCJLwAIRJeuhAi4QUIkfAChEh4AUIkvPQhRMILKA2R8Dft4/huMW49WWmmVETCBQQEBAQEBAQE/rn8UyqavEn+FU54YGCgXpWDWrVqMWPGDAIDA9+RKgEBAQEBAQEBgX8r/wonfMeOHe9agoCAgICAgIDAvxYT4UmeevwrnHABAQEBAQEBAYF3xz/lKZdvEuG2REBAQEBAQEBAQOAtI0TCSxEeA/7zriXgNrJcyUZvgROtJpds9DdT45PSUfkhNfbZu5aAxFb6riUAcHzgiHctgdIyoxrg9e5/vmW5paMShyLX4l1LINVC/wmT/1bE5JRs9BbQGHjg0tvGRl46HyH/LhAWZurz7n/FBQQEBAQEBAQE/tG8y5zwiIgIvv76a54/f06ZMmWYM2eO3hPNJ0yYwP37BaWJ79+/z9KlS2ndujWLFy9m06ZNODo6AtpnzEydOvUv6xKccAEBAQEBAQEBgX8sU6dOpW/fvnTv3p3g4GCmTJnC+vXrdWx+/PHH/Nf37t1j4MCBNG3aNH9bjx49+Oqrr96orlIysSogICAgICAgIPBPxURk8kb/jCUlJYW7d+/SpUsXALp06cLdu3d5+vRpkcds376drl27Ym5u/pc/d3EIkXABAQEBAQEBAYG/lTedE56WlkZaWpredhsbG2xsbPLfJyQk4OTkhFisfYKqWCzG0dGRhIQEypYtq3e8SqViz549rFu3Tmf7vn37OHv2LA4ODowaNYo6der85c8gOOECAgICAgICAgL/V/z6668sWbJEb/vIkSMZNWrUa7d79OhRnJ2d8fPzy9/Wp08fPv/8c8zMzDh37hzDhw9n//792NnZvfZ5QHDCBQQEBAQEBAQE/mbe9MLMgQMH8p//6FeVKxwFB6hQoQJJSUmo1WrEYjFqtZrHjx9ToUIFg+3+8ccf9OzZU2ebg0NB9aMmTZpQoUIFHj58SIMGDf7SZxCc8P8DUjMVTN1ymAsPorCzlDK6UwCd6lYp0j47R03vnzaSqVRxZOrQ/O0zth7hyqM4opOfMf2DdnRvYHwJvtSMLKb/upMLd8IoYyVjdM92dGxYS89u4+Fz/H78Is8zspBamNO+fg3G9m6PqVjM07QMfvx9H1fvR6JQqajo7MT4DzpSw9vNKA0ewz/CdUAg1tUrE79lLzc/+aZIW68xA/H+cihimZTEHYe4PWIquapsAKQeLtRaNZsyDWoij07g9pgZpBy/YHRfiGRWlB0wAolfLXIz0nm+ayNZl8/o2TmMnIyFT8GdtImpKdlJ8SR+Nw4A5++XI7K2hdxcAJTh93myaIZRGsRW1riM+S/WdeqRk5ZK4q+rSD11TM/OxNSMCp+NxKZRACampmSF3iZuaRA5Kck6dubOLlRasobUc6eInTfL+L6wtMJp6FhkNd5DnZFGypZ1pJ8/qWfnPGEGUt+C683E1BRVQhzRXw8HQFLJD4f+n2Lu7Eb2kyQer12K4sFdo3UAXD2+jstHV5KTLadS7fa0fn86pmb6+XwpCWEc3DCB58kxADi5VaNlr8mUq+ADwOWjq7h7aRdpT+OQWtpRq2lf6rcZYrSOK8fXcemwVkfl2u1p08ewjuSEMA6sn8DzJ3k63KvRqvdk7PN0RD+4yIX9S0mKuYtEZsun3x036vzp6WksWTCX69euYmNjQ7+Ph9K8ZWs9O41Gw/q1Kzl6aD8Abdp3YsCgoZi8VNbtxLHDLJz3AyNGj6dth85G9wPAvl2/s3v7b6iUCho2acknI77EzEBfANy6foW1y+eR/CQJn8pVGTZuMg6O5QHYsHoJVy+e4fnzFMqWc6BH7wE0a93RSA1bCM7X0IIhJWhYs3x+vobh4ybla7hw5hj7g7cRGfEQn0p+TP1BPwJniPT0NBYumM+f165iY2PLwI8H06JlKz07jUbDurWrOXzoAADt2nfk40Gf5I+HWq1m08b1HDlyCLlcToUKzsz6YS5WVlb/Fxq0OtIJWrCAa9euYWtjw8cff0zLli0N6lizdi2HDh0CoH379gweNChfx/Xr11m1ejXx8fHY2trSu3dvOnU07npIT09nQVAQ165dw8bWtlgNa9es0dEwaPBgTExMuH37NlO+/VbHXqFQMHHSJAICAozSkZaeweylq7l84xa21tZ81q837Zo11rO7dusua7cF8yA8EmtLS7b/Ml9n/8OIKIJWbeBRVAwyiYTu7Vry8fs9jNLwtnnT6Sgvp50URbly5fDz82Pv3r10796dvXv34ufnZzAVJTExkatXrzJ/vm4/JyUl4eTkBEBoaChxcXF4eXn95c8gOOH/B8zacRwzUzEnpn/GvbgnjFq1i8ou9viUtzdov+7EFeyspGQqVTrbKzs70L62Lwv26juMJTF70x7MxGKOzf+a+zEJjF60gcqu5ano4qRj17x2FboHvIe1TEpqRhb/Xb6Zzccu0r9dE7KUKqp5ujL+/U6UtbFk15mrjF60gX0/jEcmKbnOrzL+MWGzluHQrikiadH29m0DqPjfT7nYbiCK+MfU276ESlNHc3/SPADqbJzHs4vXudR1KI4dm1N3yyJO+rVDlWxcPW67D4eiyckhbsJgzF09cRg5iezYSLITYnTsniyZqfPe8YsZKO7d0rVZNhvlvZtGnbcwzsPGoMnOIbRfIBJvHzynzkYR8QhldKSOXbnuPZFVqUbYqCGoMzNwGfUlzp+NInqWbmkl58/HIH9475V1OH48HI06h/DhfbHw8Mb5v9NRRoWjiovWsYv/cYrOe5dJPyC/ewPQOvLO46fyeM0SMi6fx7pxc5y/nErk2E/IzcowSkdk6BkuH11Br1G/YmXryO6VI7mwfxFNu3+pZ2tp60iXTxZhU9YFjSaX66d/Y9+6cQz4Zk+ehYYO/efg4OzL8+Ro/lj6CdZ2FahSt2QHNOLuGS4dXsH7o3/Fqowju1aM5Py+RTTroa/DytaRbkMK6Tj1G3vXjOPjSVodZuYyqvv3pEq9LoQc+sWofgBYsWwhpqZmrNv0BxHhYcycOhEvb2/cPXT/YRw+sJeQC2cJWroSE2DqpAk4OZWnQ+du+TYZ6els3/Ib7h6eRp//BTeuhrB7+0Ymf78Iu3L2zJs5kW2/rabvx8P0bNNSnzN/1kQ+G/017zVowtaNK1k451tmzlsJgEQi4b9TfqSCixuPHobyw5TxODm74utXo1gN16+GELx9I99+v9AoDfNmTeKz0V9Rt0ETtm5cxYI5U/h+3goALK1t6NS9N3Gx0dy5cdXofvh52RLMTM3YuGkr4eGPmD51Ml7e3ni81KcHD+zj4oXzLF66HDDh20lf4+RUnk6dtYvJNm1cT2joXX6atxAHR0eioiKNXjRWGjQALF22DDNTUzZv2sSj8HCmTp2Kt7c3Hh4eOnYHDhzgwoULLF26FBNg4qRJlHdyonPnzuTk5PDdzJl8MngwHTt25MHDh3z99ddU8fXF29u7RA3Lli7F1MyMTZs3E/7okVEaMDFh0sSJOJUvT+fOnalevTo7du7Mt7158ybTp02jXr16RvfFvJXrMTMVs3vNEh5GRjHh+/n4eLrj7e6qYyeRWNC5VTPaBDRiwx979NqZHvQzTRvWZfGMiSQ+ecLwiTPx8XQnoMF7Rmv5NzBt2jS+/vprli1bho2NDXPmzAFg6NChjB49mho1tL8lO3fupGXLltja2uocP3/+fO7cuYNIJMLMzIwff/xRJzr+ugjVUUo5Wcpsjt58yIgOjZFZmPOetwvNq3mz90qoQfvYlFT2Xb3HJ63r6+3rE1CbhpXdMTd7tXsvuVLFsat3Gd6jDTKJBXUqedK8VhX2XriuZ+vmWA5rmfbBLhrAxMSEmMcpALg6lKV/uyY4lLFGLBLRs3l9snPURCYm67VjiMRdR0jafQxVyvNi7Vz79yBm7XYy7oaR8zyNh98vwzXvQUiWlTyxqVONB9MXk6tQkrjzMOm3H1A+sL1RGkzMLZDVaUTq7k1olAqUj+4hv3EZWcPmxR4nLueAhY8fmSEnjTpPsRosJNg0bkbSxjXkKhRk3b1NWsh5yrRsq2dr7lSejGuXyXn+DE12NqmnTyBx99SxsW3WEnVmJhk3rr2iDgusGjQhZdsGNEoFigd3ybwWgnWAfoStMKb2jkirVCPtjDZyL61clZzUZ2RcOguaXNLPnUCdloZVff2oUFHcCdlF9Ua9sK9QCYnMlkYdhnMnZKdBW4nMBttyrtqomkaDSCTm+ZOCm4b6bYbi5FYNkdiUsk7eVKzZmvhw4/rmTsguavj3wt5Zq8O/w3BuXzROh8lLOip41qRawx6UsTdupghAoZBz4dwZ+vYfhFQqpWq1GtRv6M/J40f0bI8fO0T3wPext3egnL0D3QN7c/zoIR2bDetW0blbINY2tnrHl8Sp4wdo0bYLbh7eWFnZENjnY04d3W/Q9tKFU7i6e9EooBXm5hb06vsJURFhxMVEAdD7oyG4uHkgEomo5FuNKtVq8jD0dokaTh8/QMuXNJw8eqBIDW7uXvjnaxiso6Fm7fr4N22NXVnDwQ9DKBRyzp87S7/+A5FKpVSrVp2GDf05cVx/1urYsaP8J7An9vYO2Nvb85/Anhw7ehjQ3gwFB+9k1JhxODo5YWJigqenl1EOcGnQoNWh4Ny5c/Tv3x+pVEr1atVo1LAhx47rz/AcPXaMwMBAHOztsbe3p2dgIEeOHgW0keysrCxatWqFiYkJvpUr4+bmRnR0tF47JWmoVr06DRs14vgxA31x9CiBgYHYO2j7IrBnT44e0f8egTaHuElAABKJxKi+kCuUnLp4mSF9eyKTSqjl50tA/TocOnVOz7ZqpYp0aNEEZyfDDl/C42TaNWuMWCzCpbwTNfwqExETZ5SOt42JSPRG/16FihUrsm3bNg4dOsS2bdvyb9hWrlyZ74ADDBs2jKCgIL3j58yZw969e9m9ezd//PEHzZsX/z/fWP7RTnhoaCj79xv+0S9MSEgIZ8+efaNtvmg3MDDQKNuiiHryDFORCE/HguR/X2cHHiWmGLT/YecJRnVqgsUrOtrFakhKxlQswqNQ5L2yWwXC4x8btD8QcoOAkd/RcuwsHsQk0rO5/g0BwP3oBLJz1Lg5vtmndFpXq0TazYKobtrN+0jKO2BWtgxWVX2Qh8egzsgstP8e1lV9jGrb1MkZTW4uOY8T8rep4qIwdy7eUbJs2AJlWCjqFN2np9kPHovL3LU4jJ6CmYunURosXFxBrUYVH5u/TRHxCImBaOWzw/uR+VXHtGw5TCwsKNOiDelXL+XvF0llOH00iIRVS406d2HMy7ugUavJTiz4wVdGhWPu6lHMUWDTtDXye3fISS50/bz8ZDsTMHcrvp3CpCQ8xMGlIEXLwcWXrPRk5JlFz24snVCPhV/U5Pj272jQ7jODNhqNhrhHV/JTVYzS4VpIh2uejoyidSz+sh5BY2tybNt3NGxvWIexxMfFIhKLcXEtuB69vCsSHRWpZxsTFYWXV8UCO6+KRBeaSXlwP5Swh/fp0Knra2mJjYrAw6ug3zy8fEh9/pT0tNQSbSUSKU7lXYiNDtezVSmVPHp4D1ePkqeCY96IhogSz1MUcXFxiMViXFwLopte3t5EGRiP6KhIvLwKIrna8dDeAERGRiAWizl39gz9PvqAT4cMYu+e3f83GgBi83S46umI0rONiorCu9BUv5eXV76TbWdnR4vmzTly5AhqtZrQ0FAeP35MtWolp1fGxcbqafD28ipSg5d34b7wMujoKxQKzp09S5s2bUo8/wti4hMQi8S4OxfkJFf0cH8t5/n9Lu05ePIsOTk5RMclcOd+GPVqlo6nPethYvJm//4B/KPTUUJDQzl58iSdOnUq1u7SpUtkZWUZlctlbJtvCrlKhaVEN9JgJbEgS5mtZ3vsZhi5uRpa1/ThcliM3v7XJUuhwvKldBErqQWZCqVB+44Na9GxYS2ikpLZe+E65Wz08wUz5Aomr97Op91aYi0zLnpgLGJLGTmpBWkMOanpAJhaW2JqZUl2WrqOfU5qOhYvpdUUhchCgkaepbMtV56JiaT4x7pbNmpB2oHtOtuS1ywgO8/JsG7VBcfR3xI/bZRe+3oapFLUL9moszIRSWV6tsr4OLKTH+O3fjsatRpFZDjxyxfm73fqP5inh/fr5Ygbg4lESq6BvhCV0BfWAa15Gvx7/nv5w1BMy5TFyr85GZfOYt24BWaOFRCZG/8o8mxVFubSguvMXGoNgEqRidTS8Or1ET9eIVuZxZ2QndiUdTFoc2H/YjS5uVRr2NPg/pdRKbOwkBTosHihQ5mJ1MqwjlE/XUFVgg5jkcvlyGS614HM0hK5XK5nq1DIkVla6tgp5HI0Gg25ubn8snQhnw4fjeg1F1MpFFnILAv64sVruTxLL7KuUMixsS3zkm4r5Aa+C6uW/oiHlw+13mtYogal3md8MxqMRS6XIzV6PBR64yHPG4/k5GQyMzOJi4tl9Zr1xMfHMembr3BxcaHOe3VLvQYAhYFr07IYHZaFdFgW0mFiYkLzFi1YuHAhy3/RpmmNHDnSqNQAuULxxjS84Ny5c9jY2OhEU0vWocRSpvs7aWUpJUuuMLqNFzSuV5uZi37h9+ADqHNzGfR+D/wqlZyWI1A6KJVO+KFDhwgKCkIikdChQweCgoLYs2cP/fv3JyQkBIDY2Fh69uxJSEgIKSkpjB8/npQUbXTY39+fYcOGsWjRIjIyMujevTv169dn8uTJeue6f/8+v//+O7m5uZw/f57OnTvz6aefsmvXLlavXg2Au7s7M2bMQCQSGWxz/PjxREREkJ2djbu7O7NmzdLLJ3pdpObmZCp0c7szlCpkFmY627KU2SzYe4YlQ9/8ggyZxFzP4c6QK/Uc85fxcLKnorMjszfuYd6IvvnbFapsxizeSA1vVz7p9GamdAqjzszCtJDj/+J1TnomORmZmFrr3hSY2lihTs/EGHKVCkxecnZFEhkahf6P+AssKlZBbFOGrGu6iz9VjwpF6w/twNK/BRKfqshvXSleg1yO+CUNYplMzyEGbe64iZkZd/t0I1ehwKFXHzynz+HR+OFIvCpiVasuYWOG6h1nDBqFXM/xF0ll5BbTF5LKVTEtY0dGSMHMU25GOgnzZ2DfdwiOHw8n6+ZVsu5cJ+ep4dkegNDLuzn6uzav3aViXczMZagUBTdeL16bSywNHv8CMwsZtQI+5Odv/Pl48n5k1gWzMn+e2sjdS7v4YOwmgwsrAe5e2s2RzXk6fOpibiFDWViHPE+HRfE6zC1k1A74kKVf+zPo2/1YWr/e7JBUKiUrS/c6yMrKQirVvzGSSKRkZWXq2EmkUkxMTDiwLxhPL298q1Q1+txnTxxi5dK5AFSpVguJRIa8UPsvXksN3CxKJFId2xf2L9tuXLOEmKgIvp29WG8BKcCZE4fzNfhVq4nFS+2WpCHLCA2vglQqRW70eEh0xk57bu14mFtor78PP+yHhYUFXl7eNGvegitXLpXoAJcGDQCSV7o2dXW8sDMxMSEmJoYffviBbydPpk6dOsTHxzN12jTKlS1bYqUK6Uvtvq6Gwhw7epTWrVsbvB6L1mFBZpbu72RmlgKZ9NUCUmnpGYz/bi7jhgygbTN/nj5LZfLcxdjZ2hDY0fjI/NviTS/M/CdQ6pzw5ORkpkyZwpYtW/D09NQrlm6IPXv24O7unm+bmpqKra0to0eP5uTJkyxatKjIY319fenTpw9ZWVn5jyN98OABP/30Ezt27MDR0ZEFCxbw3XffsWDBAoNtTpo0KX+VbVBQECtXruTLL/UXYr0OHg525OTmEvXkGR4O2kjag/gnVCyv+086OvkZ8U/TGLRkK6CtkJKhUNFq6i9sGNMHl7Kvf1Pg4WRPjjqXqKRkPJy0KSkPYhPxdnYs8Vi1OpeYJwVPpVJl5/DF0t9wsrNhcv/ur62pONLvPMSmpi8J27W5nzY1q6BIfEL20+dk3A1D5u2G2MoyPyXFumYV4n/fa1TbOUnxmIhEmDpWyE9JMXf1RBVf9MyDpX9L5NdD0ChLiHJok+hL1KCMiwWxGHNnF1Tx2ulLiZcPCgPTy1JvHxLXr0adoY3+J+/ZgVO/wYhtbLCsURtzJyd8124BQCSRYiISIXHzIGxsyWkRqsQ4TMRizJycyU6KB8DC3RtVrP7U7gtsmrUh4/J5vb6Q37tNzJSx2jciEZ5Ba3i+b0eR7fjV74Zf/YIFhPvWjedJ3H1839POUD2JvYfM2r7IKHhhNJpcsrPlZDxPynfCb1/YzuWjK3h/zG9Y25Uv8tiqDbpRtUGBjr1rtTqq1M3TEZeno4go+Ms6clRaHa/rhDu7uJKrVhMfF4uzi3bKPTL8kcGFlW4eHkRGPKKyr7aCT2TEI9zz1gvcvP4nd27f4OoVbdAjIz2diEdhRISH8enwMQbPHdCyPQEtC9ZWLJo7jaiIMPybaiuzREWEYVumrMH8clcPL04fK8jVVijkJCXG4epeENHb9tsqrl+5yNQfliKTGb6padqyHU1btnttDaeOHTSg4fUrILi4uKBWq4mLi8PFRTvLEREerrcgEsDdw5OIiHB8fbXpTOER4bi7a1Oy8lNECv0+GOvzlQYNAK5F6tBPO/Pw8CA8IgJfX988HRG4u7sDEBkVhYuLC3Xrah1/V1dX6tevz5UrV0p0wl1cXfU0hEdEFKkhIjw8X0NEeHi+hhc8efKEmzdvvnJNajfnCqhz1cTEJ+LmrP19CYuMxsvt1WbC4pMeIxKJ6NhSO4vvaF+WNgENuXjtRil1wv/RGdCvRanrkRs3blC1alU8PT0B9Go1GqJWrVqcPn2aOXPmcOLECb3pplclJCSE5s2b4+iodTL79OnDhQtFl7ALDg4mMDCQrl27snfvXkJDDS+afB1kFma0ruHDsoMXyFJm82dEHCdvP6JLPT8dO5/y9hyaMoSt4/uxdXw/pn7QlnLWMraO70f5Mtop8ewcNcrsHNBoyFHnoszOITdXU6IGqYU5rd6rys/Bx5ArVVx/GMWp66F08a+tZ7vj9BWepmmjf4/iH7PmwGka+Hnnn/+/P2/GwsyMGYN7vvI0t4lYjMjCHBOxqNBrsZ5d3MZgXAf1wsqvIqa21vhMHEbseu3iuMyHkaTdCKXytyMQWZjj1L0NNjV8SdxxSK8dQ2hUSrL+DMG2ax9MzC0wr1gFaa36ZIWcMqzZzBxZ3cZkXNBdfCS2s8e8YhUQm4KpGdZtuyOyskb5qORrR6NUkHbhDE4c+YW9AAAgAElEQVQfDcLEQoLMrzo2DRvz/IT+oqGsB/ewa9UOkcwSxGLKdepBdsoT1GlpPD20l/tDPiJs1BDCRg3h6YHdpF+5SMSUCcb1hVJJxuXzlOvVDxMLCySVq2JZtxHpZw2X0jMxM8eqYVPSTh/V22fh4Q1iMSKpFPu+Q8h5mkzWLeMXilZt0J3bF7aTkhCGIiuNkEM/U62hfv1YgKh753gcc5fcXDVKeQYnd/6ARGpD2fLa/OjQy7s5uyeIniPWvtKiSIBqDbpz6/x2kvN0XDj4M9UbGdYRGXqOpEI6TvzxAxYyG8rl6dDk5pKTrUStzkaj0Whf56gMtvUCiURKo8ZN2bxxLQqFnNA7t7l08TwtWukv2m3Zqh27d24nJfkJT1OSCd6xlVZttE706C++YsnydQQtXknQ4pVUrFSZD/oO4KOBnxjdF81adeDE4b3ERkeQmZHOzi3raN7GcBpfA/9mxESFE3LuBCqVkj82r8XdsyIueesCdm1dz7mTR5j8/cJXWiTarFUHjh/el69hx5ZfadHGcCm7Ag0nDWrIVatRqZTkqtXkajSoVEpycnKKPb9EIsW/cRN+2/grCoWcu3fuEHLxPC1b6ZeMbNWqDbt2/kFycjIpKSns2vEHrdtobygqVHCmWrXqbN2yiexsFTHR0Zw+dZL6DRqV2AelQYNWh4TGjRuzYeNGFAoFd+7c4cLFi7Rupb+Qu3WrVuzcuTNfx44dO2ibl3NdsWJF4uPjuX79OhqNhviEBC5duoSnEeXiXmjYuGFDvoaLFy7QqrWBvmjdWk9Dm7a636Pjx47hV7UqFZydjeqDF0glFjRvWI9Vv+9ArlByM/QBZy9fo33zJnq2ubm5KFUqctRqNBoNSpWK7GztdefmXAE0cPj0eXJzc0l59pxj50Ko6OGu145A6aTURcKLwsbGBo2mwGFUKgvSI+rUqcPOnTs5f/48wcHBrFixgs2bN78VXVeuXGHz5s38/vvvlC1blj179rB169Y3eo5JPVszdcthWk5dThmZlEk9W+NT3p5r4bEMX7GLiz+MxFQswt6mIDpkK5NgYmKis+3zX3Zw5ZF2Md/1yARmbDvKquG9qO9TsqMx8aOuTFu3k1bjZlPGSsbEft2o6OLEtQeRjFy4nvNLtSXoboRFsXTnEbKUKuysLWlbrzrDe2h/4G48iub0zftIzM1oNvr7/LaXjBnAe5U9S9TgM3EYlacURBxcP+rOgxmLiVn3B81v7uNUzc4oYhJ4cvgM4fNW0ejIekRSCYk7D/FwesHMxZ8ffUGt1bNp9+Qy8ugErn4w2ujyhADPNq+g7IARuMxdS25mOk83rSA7IQYLHz8cRk4mduxH+bbSWg3IzcpCeV+3koNIIqXsh59i6lAeTXY22bERPFk8k9xM40ryxS9bgMuYCVT9bQc5aWnELVuAMjoSWbUaeE6bw93eWmcncc1ynD8bhe+KDZiYmqGIiiDqe+1YaZRKcgp9j3IVcnJVKtQGFq0VxeO1S3H6dBzeyzajzkjjydqlqOKikfhWw2XCDB59UnATbVnPn9yszPzShIWx69ILWW3tAt6sm1dJCPrOaA0AXlWbUb/NELYtHkBOtoJKtdrj32l0/v5fv+9Mg3af4Ve/G0p5Gse3fUfG8yRMzS0o716TwOGrMDXTpled27sAReZzNs3tlX+8X/2utOlTcg13r2rNaNB2CFsX5umo3Z7GnQt0rP2uMw3bf0bVBgU60p/l6fCoSa8RBTpiwi6zdeGA/GMXjK2Ja6UG9Bm7oVgNn40Yw+KguQz8sCfWNjZ8NmIs7h5e3Ll9k++mfM3vO7QLy9t36kpiYgJjhmtroLdp34n2eYswX677bGpqhkwmw9LSuHrQALXrNqJbz4/4buIoVEolDZq0oPdHBU78l8M/okfvAQS0bI+NrR1fTPyetcvns2TeDHwqV2P0hIL+/n39L5iamjFm6Af523q835//vD/QCA19mTFxtEEN44f3o0fvATRt2S5Pw0zWLg9i8bwZVKpclTETpufbnj5xiJ8XFNTQ7x/YmuatOzJ83KRiNQwfMYqFQfP46MP3sbGxYfiI0Xh4eHL79i2mTZnE9h3axY0dO3UmMTGBkcO1s1Dt2negY6eCspj//WoiixbO58MPemFbpgz9+g+kdm3jHptdGjQAjBwxgqCgIPp8+CE2NjaMHDECDw8Pbt++zbdTprBzh3b2q1OnTiQmJjJsuPY5Ah3at89fh+VcoQLjxo5l+S+/8PjxY2QyGS1btqRDe+MqXI0YOZKgoCA+7NMHGxsbRowcma9hyrff5pcefKFh+DBtOcv2HTrorQU7duwYPXv10juHMYz/dCCzl66i66AR2FhbMf7TgXi7u3Lj7n2+nPkTRzZpy3Nev3uf0VNm5x/Xus8QalerwpLvJmIpk/L9V6P5ef0W5q34FQtzc5rUq83A3t2KOu07RUhH0cdEU9izLQUkJyfTuXNntm3bhru7O+vXr+f777/n2rVrBAQEsGvXLjw8PFi4cCGbNm0iJCSEmJgYypcvj5mZGUlJSbRt25br169z9OhRNm/ezNq1a4s959q1a3n06BEzZ2rrOj948IDBgwezc+dOHBwcWLRoEREREQQFBXH48GGdNo8fP86SJUvYvn07OTk5fPrpp6jVajZs2EBISAhz5sxhx46ip9ULo9i3/K913hsg1+bNVip5XU600s/ff9vU+KR0rDBPjTX+BuHvQmJb/GLLt8XxgcZVJvo7KS0zqgFe774MmSLX+MWzfycmvPt/Y5ai11/A+U9DTPEzBG8LTSmooGEjf1Ky0VvAoVrJC5n/bhL/2++Ntld+7sY32t67oJT8OynA3t6eadOmMXToUHr06MHTp08xMzNDKpUyadIkBg0aRK9evRAXSkO4dOkSgYGBdO/enSFDhjB9+nREIhH+/v7I5XK6deuW72Abok2bNty6dYvu3buzYsUKKleuzJdffsngwYPp2rUr9+7dY9IkbbTj5TabNm2Ku7s77du3p1+/flStavxCJgEBAQEBAQEBgX8npS4SDpCRkZE/HfrHH3+wffv2t5Ze8i4RIuEFCJHwAoRIeAFCJLwAIRJegBAJL10IkfAChEh4AUlf9X+j7TnNKT417/+BUpkTvmHDBg4ePIharcbW1rbYKLaAgICAgICAgEDpRsgJ16dUOuHDhg1jWN5iiDdFSkoKgwcP1tvetm1bRo4c+UbPJSAgICAgICAgIFAcpdIJ/zsoV64cwcHB71qGgICAgICAgMC/j9KSy1eK+Nc44QICAgICAgICAu+GV3mq6L8F4bZEQEBAQEBAQEBA4C0jRMJLEZqnye9aAialQAOUjsokt1bfedcSAHBv/2pPY/s7iL8W/64lANBw2ruvNCAqBZU4AJyyIt61BE7J/d+1BAACLK+8awmY5ijetQQAROrsdy2BHPO/9tTqN4WJJvddS8A8691XtyotCI+t10dwwgUEBAQEBAQEBP5WhOoo+ghOuICAgICAgICAwN+LEAnXQ+gRAQEBAQEBAQEBgbeMEAkXEBAQEBAQEBD4WxHSUfQRnHABAQEBAQEBAYG/FRMTIfniZYQeERAQEBAQEBAQEHjLCJHw/wNS5Uqm7b3AhfB47KQSRrWqQ6fqXnp2P5+6wepztzATi/O3bfu0C6521gDcS3zK9L0XiEhOxcvelqld/KlSvuz/jQYAkcyKsgNGIPGrRW5GOs93bSTr8hk9O4eRk7Hw8ct/b2JqSnZSPInfjQPA+fvliKxtIVdbwkoZfp8ni2YYpcFj+Ee4DgjEunpl4rfs5eYn3xRp6zVmIN5fDkUsk5K44xC3R0wlV6UtISb1cKHWqtmUaVATeXQCt8fMIOX4BaM0iK2scRnzX6zr1CMnLZXEX1eReuqYnp2JqRkVPhuJTaMATExNyQq9TdzSIHJSdEtRmju7UGnJGlLPnSJ23iyjNACY2trgO3Mado39yX7+jIj5i3m874C+XmtrfCZOoGzTJgDEb95K1NLlena29etSe/1qopavJHLhUqN1AOzbtYXg7b+hUipo2KQFQ0Z8iZmZuUHbW9evsGb5fJKfJOFTuSrDx03CwbE8ABfOHGN/8DYiIx7iU8mPqT8seSUde3dtYdf2TaiUCho1acHQEeOL1bFqeRDJT5KoVLkqI8ZNzNdx/sxx9hXSMf2HxSWeOzU9g1k/r+PSjTuUsbbi84960r5pIz27jcEHOXDyHIlPUrC1sSawfUv6de+Qvz/hcTIzl67hzsMInOzLMn7IRzSoWfWV+gHgzIFfObVvFdlKBdUbtOM/H0/F1EBfRIfd4PD2RcRF3kEkEuNdpT5dB0zCpowDABqNhoNb5nP51HYA6jfvRYcPvij24R9p6RnMXrqayzduYWttzWf9etOuWWM9u2u37rJ2WzAPwiOxtrRk+y/zdfbfuveQRWt+IzI2HmcnB774dAC1/HyN7oPUjExm/fwrITfvUsbaimF9/0P7gIZ6dht3H2L/qQvaMbG2omf7FvTr1h6Ap6lpBK3dwp+hD5ArlHi7uzBmQG+qV/I2WsPMX34j5FYoZawtGd6nOx2a1Nez27DnCPtOh5CY/BRbayt6tW1K/65t9eyu3X3I598tYFCPDgz7oKvRfZGWnsGsZWu5dOM2ttbWDOvXk3ZN9ctc/rbrAPtPniPpSQq2NlYEtm/FRz065u9PeJzM90tWc+dheN712Y/6tYwra/umviO/bN7J6ct/EhWbwMc9uzDkg+5G9wNAakYWM1Zv5eKt+5SxtmRk7050bPyent36fSfYe/YKCSnPKWMlo3frxgzo3DJ//42Hkcz7LZiI+Mc4O5Tl6wGB1PHV/99cKhDSUfQQnPD/A2YfuISZWMTxcb25n/iMUVuOU9nJDh+HMnq27ap6MqtHgN72bLWacVtP0rdhFT6o68v2aw8Yt/Uku0d013GYS7MGALsPh6LJySFuwmDMXT1xGDmJ7NhIshNidOyeLJmp897xixko7t3StVk2G+W9m0adtzDK+MeEzVqGQ7umiKQWRdrZtw2g4n8/5WK7gSjiH1Nv+xIqTR3N/UnzAKizcR7PLl7nUtehOHZsTt0tizjp1w5Vcsl1ZZ2HjUGTnUNov0Ak3j54Tp2NIuIRyuhIHbty3Xsiq1KNsFFDUGdm4DLqS5w/G0X0rKm67X0+BvnDe6/cF5W+/Ybc7GzON22FVRVfaixfTMb9B2SFPdKx8/n6S8QSCSFtOmFWtiy11v6CIj6BpJ3B+TYmpqb4fDOBtBuvPibXr4YQvH0j336/ELty9sybOZFtv62m78fD9GzTUp8zb9YkPhv9FXUbNGHrxlUsmDOF7+etAMDS2oZO3XsTFxvNnRtXX1nHru2/MTVPx9yZE9ny2xr6ffy5QR1zZ01m2OivqNugMb9vXEXQnKnMmvcLAFbWNnTu3pu42Chu37hm1PnnrfoNM1NT9q0K4mFkDONnL6SSpxvebi66hhoNU0YNoaKHK3GJTxj73TycytnRNs85nLLgF6pXrsi8iWO58OdNJv20jK2LZ2Nna210Xzy4eZZTe1cx9Js1WNs5smHBaI7sWELHD77Qs5VnptKgZW8q11yISCQmeP1Mtq+YxOAJ2jG5dGIrd64eY8z3OwETVs/5BDsHFxq17lN0X6xcj5mpmN1rlvAwMooJ38/Hx9Mdb3dXHTuJxILOrZrRJqARG/7Yo7MvLT2Dr2bN58vPB9G8YT2Onr3AV7OC2PrzPGysLI3qh59WbcLU1JT9K3/iQWQM42cvppKHG95uuvX/NRoNU0YMwsfDlbikJ4yZuUA7Jk0aIFco8fPxZMzA3tjZ2rDn+FnG/7CYnUtnI5NIStQwd80WzEzFHFw+mweRsYz78WcqubtQUU8DTBs+AB93F+KSkhk1ezFO5exo17hevk1Ojpp567dR3cfTqM+v0xcrN2JmKmbv6oU8jIzmy1kL8PFwx9td9/rUoGHK6CFU9HAjLvExY2fMw9G+bMH1GbRce31OGsf5azeZ9NNStiz5ATtbmxI1vKnviGsFR0b2683OwydfuR8A5qzfgZlYzJEl07gfFc+Y+aup7O5MRdfyL/UFTP/sQyq5VSD2cQojflyBU7kytG9Uh9SMLMbNX8M3g3rSql4NDl34k3FBa9g97xtsLEtHrfbCCHXC9flH9khoaCj79+9/J+du1aoVDx48eGPtyVXZHL0XzYjmtZGZm1HH3ZHmlVzZdyv8ldq5HJlEjiaXfg38MDcV07eBHxo0XIpM/L/QAGBiboGsTiNSd29Co1SgfHQP+Y3LyBo2L/Y4cTkHLHz8yAw5+Up6iyJx1xGSdh9DlfK8WDvX/j2IWbudjLth5DxP4+H3y3Ad8B8ALCt5YlOnGg+mLyZXoSRx52HSbz+gfGD7Es9vYiHBpnEzkjauIVehIOvubdJCzlOmpX7EytypPBnXLpPz/Bma7GxST59A4u6pY2PbrCXqzEwyjHT0XiCSSrBv24bIRUvJzZKTdu06KSdO4dSts55tuZbNiFm9jlyFAmV8PIl/7KJCoG7kyPXj/jw7f4Gs8MhX0gFw+vgBWrbtgpuHN1ZWNgT2+ZiTR/Uj8gCXLpzCzd0L/4BWmJtb0KvvYKIiwoiLiQKgZu36+DdtjV1Z+1fWcfL4QVq17YybhxdWVtb06jOwSB0hF07n6WiJubkF7/cdTKSOjno0btqKskbqkCuUnAi5yqd9eiCTSqjlV4mm9Wpx8JT+7Eq/Hh3x9fbAVCzGw6U8TevX4eb9MACi4xO5Hx7NkA+6I7Ewp2WjelR0d+XExVe7Ibl6Nph6zQNxcq2EzNKW1j0+5+qZnQZtfWs1o2bDDkikVphbSGnc9iMiHxZcj1fPBNO048fYli2PbVknmnYcxNUzu4rti1MXLzOkb8+8vvAloH4dDp06p2dbtVJFOrRogrOTg96+W/cfUtauDK0aN0AsFtG+eRPK2Fhz+qJxDwfSjsk1PvugOzKJhNpVtGNy4PRFPdv+3TtQ5cWYOJenab3a3LivvZl1cXKgb5e22NuVQSwS0aNNM7Jz1ETHJxml4fil63z2fpc8DT40q1uDA2cv6dkO6NaWKl7ueRqcaFa3Jjfu6/7O/7bvGA1r+OHh7GRUHxTWcTLkCkM/DMwbk8oE1KvNwVPn9Wz79eiEr7dn3vVZgaYN6nDr3kNAe30+CI9iSJ8eWFiY09K/HhU9XDlpxPX5pr4jAJ1bNMH/vRrIpCXfBOnpUCo5dvkWw3p2QCaxoI6vF83rVGXfOf3PMLBzS/w8XTEVi/Gs4Ejz96pz40EkoI2ClytjTdsGtRCLRHRqUhc7a0uOX7ml145A6eQf64QfPHjwXct4I0Q9TcdUZIJHuYI7/MpOdjx6YtgBPP0wlmY/bSFw+W62Xr2fv/1R8nMqO9rpTN9WcrTj0ZPU/wsNAKZOzmhyc8l5nJC/TRUXhbmzW7HHWTZsgTIsFHWK7tMW7QePxWXuWhxGT8HMxdMoDa+CdbVKpN0siC6n3byPpLwDZmXLYFXVB3l4DOqMzEL772Fd1afEdi1cXEGtRhUfm79NEfEIiYennu2zw/uR+VXHtGw5TCwsKNOiDelXC/75iqQynD4aRMKqV0v9AJB5eqBR5yCPjM7flnHvAZY+FQ0fUDh1wMQEWaWCz2rhXIHyPXsQueyXV9YBEBMVgYdXQXseXj6kPn9Kepr+tRX7kq1EIsWpvAux0X/9CZQvt12cDq3mgr6SSKSUL+9CzGvqiI5PRCwS4+5cEEnz8XAjPKb4p51qNBquhz7Ay1UbCQyP0aZdWEqlBe14uhERG/dKepJiw6jgXiX/fQX3KmSkppCZXvzNK0DEvSs4uRT0Y1JcGBXcC1JAKrj7khQXZuhQAGLiE/L6okL+tooe7kTEvNpnALTh4ZcIj441YKhPdEISYrEI90IOayUjx+TGvYd4uxp+Wu6DyBhycnJwLa9/46Cv4TFisQiPCoU1uBIem1DMUXnXxb1HeLsW9GHCkxR2n7zAkJ4dizmyCB0Grs9Knm4ljolGo+FG6AO88iLVETFx+tenR8ntFKXhdb4jf5WohOS8MSkYv0ruzoTHFR+Q0mg0XL8fjrerk842HRvgUaxxga23jYnI5I3+/RMoVekohw4dIigoCIlEQocOHQgKCmLPnj3079+fkJAQAGJjY+nZsychISGkpKQwfvx4UlJSAPD392fYsGEsWrSIjIwMunfvTv369Zk8ebLB8y1evJiwsDCePXvG48ePqVSpErNmzcLa2hqVSkVQUBCXL19GpVLh6+vLtGnTsLS0ZM+ePaxfv57sbG1u71dffYW/v35e25o1azh16hRLlizB2tr4adzCZKmysbQw09lmZWFOpjJHz7ZdVQ96vleJcpYSbsUl8+Ufp7G2MKdjdS/kqhys9NoxI1NZ8iOOS4MGAJGFBI08S2dbrjwTE4m0iCO0WDZqQdqB7TrbktcsIDtaG+GxbtUFx9HfEj9tlF77fwWxpYyc1Iz89zmp6QCYWltiamVJdlq6jn1OajoWLiVHl0RSKeqXdKqzMhFJ9acflfFxZCc/xm/9djRqNYrIcOKXL8zf79R/ME8P79fLETcGsUymcxMBkJORgdhSf5r+6ZnzuA0dxP2vv8XMvhzlA7sjLhRB8pk4IT+i/jooFXJkhc4rs7QCQC7PwtrGVsdWoZBjY6ubRiWztEL+BsZeoZDnn/v1dFi+tg65QomlTDcqZyWTkiUv/nHqq7YGo9Fo6NKqSV47Cqxkut8pK5mUJ09f7fHbKmUWEllBX0ik2tdKRSaW1vppbC9IiL7PsV3LGDCuIBdfpchCIiv4DZXIrFApstBoNAbzwrV98dJnsCy5L16muq8PyU+fc+TMBVr61+fImQvEJT5GoVQZdbxcodRxFgEsZVKyFCWMybY95Go0dGmpn8OemSVn+uLVfNKrK1ayklMOspRKLF+K1lpJpWTJlcUet3L7PnI1Grq2KMiXnvfrNj7Pi6i/KoauT0uZrMS+WL1lF5pcDZ1baVMcs+RKvevTUiYj2Yjr8019R/4qcqUSK70xkZClKH5Mftl5mFyNhm5NGwBQ08eDJ8/TOHjhT1rXr8nBC9eIfZyCQmXc/9S3jlAdRY9S44QnJyczZcoUtmzZgqenJ+vWrSvxmD179uDu7p5vm5qaiq2tLaNHj+bkyZMsWrSoxDauXr3Krl27sLe355tvvmHZsmV89dVXrFq1Cmtra7Zv1zpvc+fOZcWKFYwbN46AgAC6dOmCiYkJ4eHhfPzxx5w+fTq/zdzcXGbOnMmzZ89YuXIl5uaGF2UZg8xc30nNVGVjaaE/dBUL5WfXdnOkb/0qHL0XTcfqXkjNTckw2I7Zy82USg0AuUoFJi85miKJDI2iaMfNomIVxDZlyLqmO92oelQoQn1oB5b+LZD4VEV+y7hpZmNQZ2ZhalPghLx4nZOeSU5GJqbWVjr2pjZWqNN1nVpD5MrliF/qB7FMRq4B58152BhMzMy426cbuQoFDr364Dl9Do/GD0fiVRGrWnUJGzP0dT4e6qwsxC/lxZpaWqLO1P8MYbPm4DPpaxoc3E12aiqP9x/EsZN2kVO5Fs0QW1ry5MBho8995sRhVi6dC4BftZpYSKTIswrO++K11MCNiUQiJStLV6M8K9OgrTE6fln6U74OySvqkL+kIysr67V0AEglFmRm6ToTmXJFsdPl2w4c48CpCyz/7ivMzczy2pGQKdf9TmXK5SVOu/95bg87104DwNO3LuYWMpTygptQhVz7WS0kRedSJydFsfanz+jabyJevgV5yOYS/bbMJbIiF2Zq++Klz5BVfF8YwtbamtnfjGXpus3MX7meBrVrUK9mNRzL2Rl1vFRiYbgvi3Fitx08zv5TF/hlxoT8MXmBQqXiyzlLqFbJm4H/MS4aLbOwIFP+8nUhR1bMepath06y78wlVkwdl6/hzNVbZMqVtPWva9R5X8bw9Vl8X2zff5QDp87z88xv8nXIpPqfJ8uI67NoDa/+HfmrSC0syHh5TBQKZJKix2TLkbPsO3uFVZNHYG6m/d9bxtqS+WMHsWDzHuas34F/DV8aVKuEo51tke0IlC5KjRN+48YNqlatiqenJwA9e/Zk9uzZxR5Tq1Yt1q1bx5w5c2jQoAEBAfqLAUuiRYsW2Ntrcy579erFzJnaBX3Hjx8nIyODQ4cOAaBSqahSRTu1GhMTw/jx40lKSsLU1JTk5GSePHmCg4N2amnixIm89957/PTTT8Wu3jcGj7LW5ORqiHqahkdZbTrIg6RnOs5uUZiYFExVVbQvw4aLoTqRo4dJz/mgXsmr/EuDBoCcpHhMRCJMHSvkp6SYu3qiio8p8hhL/5bIr4egUZYQAdOgmy7xBki/8xCbmr4kbNfmBNvUrIIi8QnZT5+TcTcMmbcbYivL/Giydc0qxP++t8R2lXGxIBZj7uyCKl47BSvx8kERFalnK/X2IXH9atQZ2qh78p4dOPUbjNjGBssatTF3csJ37RYARBIpJiIREjcPwsZ+VqKOrMgoTMSmSD3ckUdpU1Isq1Qm86VFmQA5qWncmzAx/73X2FGk37oNQBn/hlhXr4r/6aMAiK2tQJ2LZSUf7owcZ/DcTVu2o2nLdvnvF82dRlREGP5NWwMQFRGGbZmyetFnAFcPL04dK0hXUyjkJCXG4er+6hUFXtaxYO50IiPCaNy0FQCRxehw8/Di1LGCfPEXOtxeQweAu3N51LlqYhKScMtLPXgYGaO3APAFe46dYcPOA/z83Vc4liuoUOTt5kx80hMy5fL8KG5YZAxtA/QrSBSmTpOu1GlSUClj87L/khB9n5oNtc5iQvQ9rGzLFRkFf5Ycx6ofPqFV9895L6Cbzj4nFx8Sou/jVrFmfluF01Vexs25grYv4hNxy0s9CIuMzk9peBXqVKvCqrnTAchRq3l/2Hj6dOtQwlFa3Cs4oX8YLLIAACAASURBVFbnEp2QhHvemIRFxRY9JsfPsn7XQZZP/6+eo6/KzuaructwKGfH15/2M1q/ewXHPA2Pca/gCMCD6DidNJPC7D5xnvW7j/DLlHE4FdJw+fZ97kVE0+HzrwHtTY1IZMKjmDh++lJ/4bGejhfXp86YxBQ5JnuPnWbDzv0s++5rnevTy82F+KTHOtfnw8gY2hmocFKkhr/4HfmreFSw145J4hPc81KKHkYn4O1S3qB98KlLrNt7gpWThuNUVvf7U7dKRTZMHwtor89u42fTr0Px66TeFf+UFJI3SamfG7CxsdHJeVIqC6Zr6tSpw86dO6levTrBwcEMGDDgjZ1Xo9EwdepUgoODCQ4O5sCBAwQFBQHwxRdf0LdvX/bt28fOnTsRi8U6uurXr8/Vq1d5+vTpX9YhNTejdRU3fj55A7kqmz9jHnPyQQyda+iXpjpxP4Y0uRKNRsOtuGQ2Xb5Hi8rafOn6nk6ITUzYdPkeqhw1v1/WRoIbeBr+0pc2DQAalZKsP0Ow7doHE3MLzCtWQVqrPlkhpwzam5iZI6vbmIwLx3W2i+3sMa9YBcSmYGqGddvuiKysUT4KNUqHiViMyMIcE7Go0Gv96i5xG4NxHdQLK7+KmNpa4zNxGLHrtQvTMh9GknYjlMrfjkBkYY5T9zbY1PAlccehkvtBqSDtwhmcPhqEiYUEmV91bBo25vmJI3q2WQ/uYdeqHSKZJYjFlOvUg+yUJ6jT0nh6aC/3h3xE2KghhI0awtMDu0m/cpGIKROM6odcuYLko8fwHDUMkVSCTZ3a2LdqQdLufXq2EjdXTMvYgkhE2aZNqPB+IFHLVwEQuXAplzp250rgB1wJ/ICUE6dI2L6D+5Om6rVTFM1adeD44X3ERkeQmZHOji2/0qKN4UhhA/9mxESFE3LuJCqVkj82r8XdsyIubh7az6VWo1IpyVWrydVoUKmU5OTop14Zonmejpg8HX9sWV+MjqZER0VwMU/H9s3r8CikQ52nQ61WozFCh1RiQYsG77Hy913IFUpu3HvImSvX6dBcP1Xu0OmLLN+8g0VTvsDlpQWJ7s7lqeTpzuqtu1GqsjkZco2wqFhaNnq1COh7Ad24fOoPkuLCkGemcTz4F+o2/Y9B29SnSaycPZjGbfoarHjyXkA3zhz8ldSnSaQ9e8yZA+uo27RHsX3RvGE9Vv2+A7lCyc3QB5y9fI32zfXTCXJzc1GqVOTk9bNSpSI7u6CfH4RHkpOTQ2aWnKXrNuNUrhwN69Q0qg+kEgtaNKzDyi2788YkjNOXr9Oxmb7DePBMCD9v3sWiyeP0xiQnJ4dv5v2ChZkZU0YMQvQKVSakEgtaNqjNim17tRruP+L0lZt0DGigr+HsJZZt2c3iiaNwcdJdEPzZ+13YNn8KG3/4ho0/fEPTujXo3qoJ337e32gdzRvWzb8+b957yJnLf9KhuX7KzaH/sXfeYVFc3x9+YYHdhQXEBiJVQeyxYhfFbsRuNNbEEo1GDdFoLLFFjZpg771FxYpdYy8JGksUu6KACIKAdLawy/7+WAVhF1gTC/n+5n2efZ7dmTN3PnNndubce889cz6Yldv2sGjqWMo6lM617vX1uX7nfpSqTM5dvsbjiEiaGXF9vqv/COjOiVKVSZZWiyZLg1KViUaTZVxdiMX41qnGyr3HkSuV3HgYxtnrd/i0kf4xHPnzOst2H2X5uK9wKl1Cb/398Cgy1RrS5AoWbj+EQ4liNKxufArND4qp6bv9/A9gos0b1f+RiI+P59NPP2XXrl24uLiwefNmZs2axfXr12ncuDFBQUG4urqyaNEitm3bxuXLl4mMjMTBwQFzc3NiY2Np1aoVN27c4OTJk2zfvp0NGzYUuM8lS5YQGBjIgQMHKF68OJMmTcLGxobx48ezbNkyQkJCWLRoERKJhLS0NGJjYylfvjz16tVj06ZNVKxYkV27djF58mROnTqFk5MTvr6+rFy5kvv377NmzRrWrl2Lvb1xs8jlW2YaXJ4sVzL14J9cCntOMamYUb61aF/VnetPYxmx/TTB4z8H4Ie9FwgOi0alzsLexpLPalegt3dOruzXObqfvMrRPe0t84R/SA1xfxjO1JErT3h6Kkn7dHnCxR6VKPXNZJ592yfb1rJOY4p16Uf0pNy9uuZlnCkxyB+zUg5oMzPJfBZG0t4tqJ7m7sG9te6OQQ2eP35DhSkjcy17OGMJkRv34BNymHPVP0URqeupd//2C8qPHYKpVELMvuPcHp4nT/i6nynm/YkuT/io6QbzhLu00e+l0eUJH4d1zdqoU1KI2bSG5HOnsKxSDbdpc7nbo73OztoGx6EjkdWojYmZOYqIMJ6vW478oX46wtK9B2BRpqzBPOEvHxuOt9TlCZ+OXcP6ZCYlETZ/MS8OH8W2dk2qrVrGxTq6B2yptq0pP2EsZtbWyMOf8iRgIYl/GM6J7jV7BsrYWIN5wm0P6Dc0XnNo3w4O7PkNlVKJd6NmDHkjT/iY4X3p3KN/dq91yI0rbFi5gLgXMXhWqMzX/pMoba/rGTx78ggrFuauA58W7RjuPwkAUwq+ZR7ct4P9e7ahUiqp18iHr97Q4T+8H1179HtDx1XWvaFjhP/EbB1nTh5h+cLco4E+LdryzSsdTgr9LEzJr/Mwh9zF1lrG169yIN+4+5DvZi/k9NblAHQdPp4XCYnZw9oAbZrUZ/xQXUfG8xfx/LR0PXdCn+DwKg+zoTzh5+T6zsubXDi6kXOH1pGpUlC1biu6fDktO0/4/B/8aO73FTUb+XFy7zJO7luGhTh3rO+MtbpsEVqtlqM7AnLlCW/Xa0z2iFpjK/0wMl2e8LVcuXkbG2sZw/p+RuumDbl59wFjZ/7KiW1rALh++x6jpuSu5xpVKrL0J93IzdT5y7l0/SYA9WpUw39wf+yK6afCM1MbHm1LTktn1vKN/HXrHrYyK4b36UqbxvW4ce8R/rMXc2aLLv97lxETePEyEQuznJCHtk3qMf6rvly/+4Dh0wIQW5hj+kZc7YKJo6hRyTPX/kw1+vHAyWnp/LRqK3/duo+tzIoRn+vyhP99P5Rv5yzj3EZdB1OnUVNeaci5Lto29mbC4M/1ypy+YjOli9sZzBOutjAcUpWSmsasZeu5EnJHd3327U7rJg24cfchY2bN59RvuncHdPv6e/3rs2kDxg0dALzKY790LXcePcGhZIl884SbaPWd4nf1H/lp6TqOnM2d2WXyiC/5tHnuEXmLDMP3zuS0DKavDeTy7YfYyqwY+ZkuT/jfD54w8te1XFyjuwf5fTeL2MTkXOekfcNaTPyyOwATl2/l4k3d/bxhNS/G9e9McRv9OWiyesbnc39fpCzUT0/6b7D5dn7hRkWcIuOEAxw9epSFCxcilUpp1qwZa9euJSQkhL1797J8+XKKFy9Os2bN2LJlC5cvX2bPnj1s3LgRU1NTsrKyGDhwIF26dCE1NZUhQ4aQkZGBt7d3gRMzHz9+TGJiIrGxsXh4ePDzzz9jbW1NZmYmS5cu5dSpU5iYmGBiYsI333xD69atCQoKYvHixdja2tKkSRMCAwPZs2dPLie8QoUKHD9+nIULF7JmzRqcnJwManiT/Jzw/4/k54R/SPJzwj80hpzwD01+TviHpiAn/ENRmBP+oTDkhH9oCnPCPxSGnPAPTX5O+IfGkBP+ocnPCf/QGHLCPzT5OeEfmqLghKcuGvNOy7MeHfBOy/sYFCknPC0tDZlMN1ltz5497N69m+3bt7+3/S1ZsoSMjAzGjx//3vbxNghOeA6CE56D4ITnIDjhOQhOeA6CE56D4ITnIDjhORQJJ3zJ9++0POuRv7zT8j4GRWZiJsCWLVs4duwYGo0GW1vb7EmSAgICAgICAgICAv9LFCkn/Ouvv+brr/VfM/1vSEhIYODAgXrLW7VqxciRIw1sISAgICAgICAg8C4RsqPoU6Sc8PdBiRIl2L9//8eWISAgICAgICDw/xfhZT16CDUiICAgICAgICAg8IH5n+8JFxAQEBAQEBAQ+MgI4Sh6CE64gICAgICAgIDAe8VECEfRQ3DCixDpj8I+tgSsPP/ZK7PfNcnPPn5ap6KQGhDg6fHojy2B0vXsCjf6ABSF9IBZFI3enFSp/lv8PjTizI+fAq6ooBTrv8DnY6AtItenwCukH/+eJVB0EZxwAQEBAQEBAQGB94sQjqKH4IQLCAgICAgICAi8V0xMhXCUvAg1IiAgICAgICAgIPCBEXrCBQQEBAQEBAQE3i8mQjhKXgQnXEBAQEBAQEBA4P3yEcNRwsLC+OGHH0hKSqJYsWLMnTsXNze3XDZLlixh27ZtlC5dGoBatWoxdepUAORyORMmTODOnTuIRCLGjx9P8+bN/7UuwQkXEBAQEBAQEBD4n2Xq1Kn07t2bTp06sX//fqZMmcLmzZv17Dp37sz48eP1lq9btw6ZTMaJEycIDw+nT58+/P7771hZWf0rXYIT/h/ARGqFrNMXWHhUISsjjYwTe1DeumzQVlTGBVm7zzEr44I2U0nG+SMoLp3MXi+p3xJpg5aYWtmgSU4gZdtSshJiC9WQLFcy7VAwwU+isZNKGOlbk/ZV9dMZrjh3k3V/3MJcJMpetuurDjjZWQNwP+Yl0w8FExafjHtJW6Z2aEBFh+JG14VIZk3Z0d9jXbMO6pRkYjatJfncKT07EzNzygz9Bpv6jTExMyPj3m2ili1AnRCfy87CsSyeS9eT/Mc5ngXM/s9ocB3eB6f+XbGuWoHowEOEDJqQr6376AGUGzsEkaWUmL3HuT1iKlmqTACkrmX5ZO3PFPOujvzpc26PnkHC6WCjNACIrG1wnzARm7r1UCcn8WzVCl6e+F2/LszNcRntj13TZpiYiUi7dYvwX+aSGR8HgMTVDdfvxmLpVRF1UiKRy5eSdP6c0ToADgUFErR7GyqlgvqNmjFkxBjMzS0M2t66cZW1KxcQHxeLZ4XKjPCfSKnSDgBkZqpYsyyAS3+cxUIsoVO3z/Hr0stoHYeDAtm/+zdUSgX1GjVj8IixBepYv3I+8XGxeFSozHD/Sdk6gi+c4sj+XYSHPcLDsxJT5ywtdN8pqanMX7SEa9f/xtbGhoFf9Me3mY+e3Y2bIfy2PZBHjx9jLZOxZcPaXOs3btnKn8GXeRoZSe9en9G/T2+jj/9Nzh7ZzOkD61CpFHzi3Yoeg6ZgZqAu1OpMtiwZR+STOyTGRzPix/V4VPbOXr9qzjCe3L+W/VujzqS0ozvj5u3Ld98pqWn8vGwdV27ewtbamqF9e9C6aUM9u+u37rJh134ePgnH2sqK3avm51p/6/4jFq//jfBn0Tjal+K7r/rzSSUvo+sgJTWNuUtWcfVGCLY21gzp14tWPo31dYTcYVPgHh49CcNaZkXgGv3zvfvgEXYdOEpScgqlS5Vg9sSxOJctPJVqSmoa85asfEPD57Q0oOHvkNvZGmQymZ6GnkO+ITEpCdNXPZpVK3rx6/RJxlZFkdBRFDQAJKemMXvFJv4KuUMxaxnDenejTZN6enZb9x/j6Lk/iYlLwNbamq5tmtG3U1sAXiansHDDDv6++wC5QkU5F0dGD+hJFc9yRuv4oHykcJSEhATu3r3Lhg0bAOjQoQM//fQTL1++pHhx4/yPo0ePMmfOHADc3NyoWrUq58+fp127dv9Km+CE/weQfdoHNGoS5vlj5uCMTd/RqGMi0cTlzh9tYinDtp8/6cd2oLxzDRORGaY2OfmdxbWaIKnVmJSti9DEPcfUrhRaRYZRGn4++hfmIlNO+/fgQUwiIwNPU8HeDo9SxfRsW1d2Y3Zn/ZtapkaD/86z9K5XkZ61vdh9/SH+O89yYESnXE57QTh+PRptppp7fbsiKeeB29SfUYQ9Rvk0PJddiU7dsKxYhdCRg9Gkp1F25Fgch47k6eypucsbNhr5o/tG7bsoaVBGvyB09nJKtW6CqVScr13JVo0p//1XXGo9AEX0C+rsXorn1FE8mBQAQM2tASReusFffkMo3c6H2oGLOVupNap44/K0u44ZizZTzY2O7bH0rIDnvAAyQh+hCMud896+R09kVatxe0BfNOlpuI37AVf/MYRO+gFEIjznzONF0D4e+I/CukZNPOf+yp2B/VFGRhql48a1ywTt/o2psxZhV6Ikv8ycSOBv6+n7xTA925TkJH6ZPZmvR42ntndDdmxdy4K5U5kdsAqAnb+t53n0M5Zv2E1SYgLTJozGycWdmrX1H5CGdOzfvZUfX+kImDmRXb+to/cXXxvUETB7EkNHjae2dyN2bl3LwrlTmBWwGgAraxvad+pB1LOn3Ll5TW97QyxdvhJzMzN2/raZx0/CmDxtBuXc3XFzdcllJ5FIaNO6Jc2UTdixc7deOY5lyjB44BccPnLUqP0a4v7NPzi1fy3DJ6/H1q4U6+eP5ujuZfh97m/QvpxXLXza9WPjou/01g39YWXu45zxBZ5VCj4fAWs2Y24m4sD6pTwKj2DcrPl4uLlQzsUpl51EIuZT36a0bFyfLXsO5lqXkprG+NnzGTvsS3zq1eHkxWDGz17AzhUB2MiM6wFbsGo95mYi9m1aRWhYOD/8NBcPd1fcXZxz2UklYtq3bIZS1ZDfdgfplXPo99McPnGWuT+Ox9W5LNExsVjLZEZpWLhqHeZmZuzdtJrQsHAm/DSH8gY0SCQS2rdsjlLViK0GNADMnjSOOjWqG7XfoqijKGgACFi3DXMzEYfXzOdReCRjfl6Mp5sT5ZzL5rHUMuWbQZR3dSIqJo5vZ87HvmRxWjXyRq5QUqm8G6MGfIadjQ0HT19gzM+L2btsDpZSyT/S9T5519lRUlJSSElJ0VtuY2ODjU1O3v7nz59jb2+P6JWfIRKJKF26NM+fP9dzwg8fPszFixcpVaoUI0eOpGbNmgBER0dTtmzOuSlTpgwxMTH/+hj+U9lROnXqhEKheOvtfH19efjwYb7r7927x5EjR4wq69mzZwQGBhptW69e4Q/uAjG3wKJybdJPB4FKifppKKr7NxHXaKBnKm3YGlXoHZQhl0GjRqtSoIl/rltpYoJl846kHwtEE6dblpUYh1aeXqgEuSqTk/efMsKnBpYW5tR0KY2PpxOHbz15q0O5Eh6LWptFX+9KWJiJ6O1dCS1a/go37kI2EUuwadiU2K3ryVIoyLh7m5TLf1KseSs9Wwt7B9KuX0GdlIg2M5Pk82eQuLjlsrFt2hxNejppN68bfQxFQQNATNAJYg+cQpWQVKCdU7/ORG7YTdrdUNRJKTyatRyn/l0AsPJ0w6ZmFR5OX0KWQknMvt9Jvf0Qh65tjNJgKpFg59OcZ2tXkSWXkxZyk6SLFyjZRr9nQFzGkeTLl1EnvkSrUvHy1Ekk7rqRFKmLK+YlShIbuB2yski9fo20WyEGy8mPs6eP4dvqU5xd3ZHJrOneawBnTxp2IC8Hn8fZxZ0GjZtjYSHms94DCQ8LJSoyAoBzp4/RvdcAZDJrnJzdaNnGj7Mnjbs/nD99lOatOuDsWg6ZzIauvb7IV8dfwede6fDFwkJM994DiXhDR/UadWnQpAV2xUsatW+5QsHFP4MZ0K8PUqmUqlUq06CeN6dOn9GzrehVgZa+zSnj4GCwrNYtW+BdpzZSqdSofRviyvn91G/elTLOHljKbGnddRhXzhl2ZszMzPFp349yFWthalpwg/xlXBRP7l+nbtOO+drIFUrOXbrC4N7dsJRK+KSSF43r1uT4uT/0bCt7lqdts0Y42uu//OjWg0cUtyuGb0NvRCJT2vg0opiNNecvXS3k6F/rUHA++DKD+nyGpVRC9coVaehdm9/PXNCzrVTBgzbNm+Job6+3Lisri407dvPNoH64uThhYmJC2TIO2FgX7oS/1jAwl4Y6+Wpo3bwpZexLG3V8b0NR0FEUNOh0KDlz6Rpf9er86vr0pEmdTzh2Tn8Usm+ndniVc8VMJMK1rANN6tYg5H4oAGXtS/G5X2tK2hVDJDKlcysfMtVqnkb/e+fwv8CmTZto0aKF3mfTpk3/qLxevXpx6tQpDh48yKBBgxg+fDiJie/3xYH/KSd8//79SCTvvnV37949jh07ZpRtVFSU0U74u0BUwgGyNLlCRjSxkZiV1h+CNHMqh1aeju3gCRQftwCbPiMxtdW18kxt7BDZFkdUuix2Y37Bzn8Ols07GTU8FPEyFTNTE1xL5LQsK9jb8TjOsAN4/tEzmv4aSNeVB9h57UH28sfxSVQobYfJG/v0LG3H47jkwisCEJd1Ao0GVfSz7GWKsMdIXN30bBN/P4JlpaqYFS+BiVhMsWYtSb32V/Z6U6kl9n2+5PnaZUbtuyhpeBusq3iSEpLTy54S8gCJQynMixdDVtkD+ZNINGnpb6y/j3VlD6PKlji7oNVocvVWyx8/QuquPxQad+gAsmrVMS9RElOxmBKt25B8qYCwFxMTpOWMH1J9FhGGq3uObld3D5KTXpKaon9tRUaE4epePuc4JFIcHMoS+TSMtLRUEl8m5CmrPJF5RjnyI/ItdOTVLJFIsXcoy7On/+zNuVFRUYhEpji90VtTzt2d8KdP/1F5/5aYZ6E4uuaEbTi6eJGanEB6asENx8K4cv4A5SrWonipvD2GOURGP0dkKsLFsUz2svKuLoRFRr39DrX6bzx88vSZAcP8dbwZMuLh5kpYpHHbvyYu4SVxCS8JexpJ94HD6TlkJOu37SIrq/A3lj4zoKG8myvhRo4y5WXW/KV06jeYsVNnERoWbvR2RUFHUdAA8PR5LCKRCBfHnEawh5szT54V/HZkrVbLjXuPcHc2HIL0MOwparUaJ4d333B4J5iYvtPPgAEDOHXqlN5nwIABuXZbpkwZYmNj0Wg0AGg0Gl68eEGZMmVy2ZUqVQpzc3MAGjVqRJkyZXj06BEAjo6OREXl3D+eP3+OQz6dGG+D0U64l5cXK1asoFu3brRo0YLg4GACAgLo3LkzHTp04PHjxwDExcXRr18/unbtyqeffsq8efOyy5g0aRKzZ+tiXuPj4/H19eXevXvs2LGD6dOnAxASEoKXlxchISEATJs2Ldvp9fLyIj1d5zD4+vqyaNEievbsia+vL1u3bs3ez9WrV/Hz88PPz48ZM2agNXATfU1iYiKLFy/mzz//pFOnTsycOROA8+fP07lzZ/z8/BgwYAAREbreqRkzZvD48WM6derEqFGjAJg7dy7dunWjY8eODBgwINeJ+reYiMVolbl7/7MUckws9BsjIhs7xDUakn5kOy/nf48mMR7rHl8BZIelWHhUIWnZFJI3/IK4mjfiWk0K1ZChysRKbJ5rmUxsQbpSrWfburIre4d15Mx3PZjyaX1WX7jF0ds6p0KuUiPTK8ecdGVmoRoATKVSNPLc4TOajHRMpZZ6tsroKDLjX1Bp826q7DyM2NmFF9tzJmHY9xvIy9+P6MVn/xc0vA0iK0vUyWnZv9XJqQCYWVthJrMiMyU1l706ORWRtXHD7KZSKVnpuUdS1GnpmFoaqItnkahexFJj/yFqHT+FxNWN6A3rAVA8jSAzKRGH3n0xEYmwqeuNdY2amIqNb3ArFHIsrXJ6BV9/l8v1w63y2ursrZDLM1C8srd8Y7KNpZUse3lhKBVyvW0L1pG7ri2tZAZtjUEuV2CZ5zq0srJELpf/o/L+LUpFBhKpdfZvqaXs1fLCR98K4uqFA3j7dC7QRq5QYmWZuxdfZiUlQ/52I6lVvTyIf5nEiQvBqNVqjp65QFTMCxRKlVHby+UKPR3/5JzExScAcOXvW2xY/AsLZ/7IqQt/cPik/iiHIQ2WenVh+dZ1ATD5u2/YsWYpgWuXUbNaZb6fNpvUNOPOZ1HQURQ0gK5H3ipPuIjMsvDrc+3OA2i1Wjo0b6S3Lj1DzvQl6xjYoyMyK/17cJHA1OSdfmxsbHByctL7vBmKAlCiRAkqVarEoUOHADh06BCVKlXSC0WJjc3p7Lx37x5RUVG4vxqxbdu2bbYvGh4ezq1bt2jSpHD/qdAqeRtjGxsb9uzZw9ixYxk+fDi1atUiKCiITp06sWLFimyblStXsnfvXoKCgrh9+zbnz58H4McffyQ4OJiTJ08yduxYBg0aRKVKlWjQoAHBwbpeseDgYGrWrMmlS5eyfzdooB96AaBQKAgMDGTz5s0EBASQnp6OSqXC39+fyZMnc/DgQerUqUN0dP6tSzs7O0aNGkXDhg3Zv38/kydPJiEhgXHjxvHrr79y8OBBOnTowNixYwGYMmUK5cuXZ//+/SxevBiAIUOGsGfPHg4cOECHDh349ddf36ZaC0SrVGKSxxkxFUvQqvT/rFp1Jqp711FHh4NaTcaZA5i7eGIilqLN1Dm6GRePolXIyUpKQHH1HBae1QrVYGmh7yinqzKxEutPKShfqhilrS0RmZpSw7k0vetW5OR9XU+c1MKMNIPlmOuVY4gsuRxRHidDZGlJlgGnxfHr0ZiYm3O3V0fudGtHSvAF3KbPBUDiXh7ZJ7VJ2K8fC/tf0PA2aNIzMLPJcThff1enpqNOS8csz3C2mY0MTapxD5IsuRzTPE6kyMqKrAz9unD97ntMLcy53q4111o1J/HcWSoELABAq9EQOmE8tg0aUuPAERx69Sbx9ClUcS/y3feFM7/Tt3tr+nZvzaypY5FIpMgzcnS//i410DjKawuQkZGBVGqJ5JW9/I1jkGekZy83pKN/91b0796Kn6eOQfyWOjLy6JBnpBu0NQapVEJGnutQd1z/PKTkbbh28RDjv6jL+C/qsmrOMMQSSxTynAag4lXom1jyz7MJPLl/nZSkeD6p17pAO6lETHpGbkc3PUPx1nGyttbW/DzhWwIPHMNv4Egu/X2LOtWrULqEXeEbozsneXVkZMjf+pxYiHWTWT/v6oe1zIoy9qXp2KYll67eMEpDhl5dZPyjmOFqlSoiFlsgEYvp070LMisrbt01C3CaWgAAIABJREFUbj5LUdBRFDQASCUS0vM43OlyeYE6dh09zdFzwQRMGIWFee5npkKpYuycJVStUI4BXdq/9bH8f2DatGls3bqVNm3asHXr1uyO3yFDhnDr1i0A5s+fT4cOHejYsSOTJ09m3rx5lCqlC1MbNGgQKSkptGrViqFDhzJjxgxkRs7JKIi3mpj5ehZolSpVALJzJFatWpUTJ04Aum7+efPm8ffff6PVaomPj+f+/fs0bdoUiUTCwoUL6d69O02aNKFPnz4AuLq6olQqiYmJITg4GH9/f1auXImfnx+ZmZm4uLgYUAPt2+suttctn5iYGDIzM5FKpdmx2O3bt2fKlClvVSk3b96kYsWKeHjohoq7devG9OnTSUtLM2h//vx5tm3bRkZGBmq1fu/wv0GTEAOmIkyLlybrpc4pETk4o36h37BQx+Q/xKlJiEGrzoQ3BgXyHx/IjWtxa9RZWiJepuBaXNfCfBibSHkDkzLzYmJC9khE+ZLF2HLpHlqtNjsk5VFsEj3rGJdpQBn1DEQiLBzLoorWjTZI3D1QRITr2UrLeRCzeR2aNF1Pb/zBvdj3HYjIxgarajWwsLfHa4OuVWsqkWJiaorE2ZXQb4cWeQ1vQ+qdR9hU9+L5bl1csk31iihi4sh8mUTa3VAsyzkjklllh6RYV69I9I5DRpWtiHyKiUiE2MkZ5TPdcK6lhwfyMP25AlJPT6JWr0STqptE82LPLpyGDMXM1hZ1cjLyx6E8GDk8277SitXEH8s/DrtJ89Y0aZ7jiC38ZTrhYaE0bOILQHhYKLbFimNtY6u3rbOrO+dO5cRpKxRyYmOicHbRxZPbFS9BeFgon9Ssm12Wc55Y/vx0LP5lGhFhoTRo0gKAiAJ0OLm6c+5UThjcax1OLvpZh4yhbNmyaDRZREVFU/bVcPuTsHDc8rl/vmtqN+5A7cYdsn9vWTKO6KcPqNlAl8khOuIB1rYlsLIu/L6RH1fO76e6d0vEkoIbKs6OZdBkaYiMjsH51ZB/aPhT3PUmvRVOzSoVWfuL7oGt1mj47Osx9OrY1qhtX+t4Fv0cp1ehMaFhEbg7OxWyZW5cyjpibmaWK5TP2EwTTgY0PA6LwM3ZuZAtC+fN+/t/QUdR0ADgUsYejUZD5PNYnMvo5gA8Cn9GOSfDYSYHT19kS9BRVswYR+kSuXtvVZmZ/PDLMkqXsGP8V/3+3UG8Z0xMPl4EdPny5dm1a5fe8jVr1mR/nzt3br7bW1paZne8vkveqkbEYl0WBlNTUywsctJMmZqaZjufGzZsICUlhV27dnHw4EFatmyJUqnMtn38+DFWVlbExcXlcljr16/PmTNnSEhIoF69esTFxXH27NkCJza+1gO62a6v433yYvIe0+JERUXx888/ExAQwKFDh5g9ezYqlXFDlUaRqUJ17zpWvp3B3AIzFw8sKtZAeUM/nlb590UsKtVE5OAMpiIsfTqQGfEQrVIOmSqUt69g2bgtJhYSTG3skNRuiurhzUIlSC3MaVHRmRVnbyJXZfJ35AvOPozk02r6MbtnHkSSIlei1Wq5FRXPtiv3aVZBd4Or62aPyMSEbVfuo1Jr2HFF12vg7WZcXJVWqSAl+AL2fb7ERCzBslJVbOo1JOnMCT3bjIf3sfNtjamlFYhElGjfmcyEODQpKbw8fogHg/sQOnIwoSMH8/LoAVKvXiJsyrj/hAYAE5EIU7EFJiLTN77rT2iL2rofpy+7I6tUHjNbazwmfs2zzbq0bumPwkm5eY8KP47AVGyBfaeW2FTzImbvcaM0ZCkUJJ47S9nBQzCVSJBVq06xxk2JP64/ETH93j1KtG2PyMoKE5GI0l26oYp7gTpZFystLe+BiYUFpmIxDp/3xrxESeKPHDZKB4CPb1tO/36YyKdhpKelsidwM81aGp7Y6d2gCU8jwrj0x1lUKiW7t2/E1a08ZZ1dAWjq25Y9gZtIS0slKjKCU8cP0qylcb1LTV/pePZKx97ATQXoaEpkxBMuv9KxZ/sGXN7QkaXRoFIpydJoyNJqUamUBTbypRIJjRo2YNPW35ArFNy5e5c/L12mha/+CyWysrJQqVSoNRq0Wi0qlYrMzJxRKrVajUqlQqvVotHobPO7v+ZHnSYduXxmLzHPHiNPT+H3fauoW0AYiTpTRaZK+Wr/mWSqlLmcGpVKwY1Lx/FuWnAoCuh6wn3q1WHtjr3IFUpC7j3k4pXrtPHRH8bPyspC+UZdKFUqMjNz6vnhk3DUajXpGXKWbdyOfYkS1KtpXEYMqURC0/rerNu2C7lCwa17D/jjr6u0bq4/jJ2jQ41WSy4dErGY5o0bsH3vATIy5LyIT+DQ8VM0rFvTKA1N6nuzftvOVxruF6pBo9FAnrqIjYvn1r37ZGaqUapU7Nh7gOSUVKoama6xKOgoChp0OsQ0q1eLNYH7kSuU3Lz/iAtXbtDWR3/U//iFS6zctpfFP/pTNs/kYbVazcSAFYgtzPnxm4HZ6RKLLO84HOV/gXd+xlJTUylVqhRisZjY2FhOncrJnxwZGcns2bPZunUrLi4uLFy4MHtd/fr1WbNmTXY6mFq1arFmzZp8Q1Hyo1y5cigUCq5e1c1eP3bsmMEUNm8ik8lITc2Jja1Rowb379/PjnPft28flStXRiaTIZPJcvWIp6WlYW5uTqlSpcjKymLHjh1vpdcY0g5tBXMLSoxfiHX3r0g/uBVNXDRmrp6UmJQzqS8z7D4ZJ/di03c0xccvQFSiNKm7VmevTz/8G1qVErvvA7AdMhHlrcsor180SsPEdvVQqNU0X7CLCfsuMLFdPTxKFeP601gazN2ebXf8Tjh+y4NoOG8HPx74gy8bVKHjJ7pJcOYiEQs+a8ahkCc0+TWQoJuPWfBZM6PTEwJEL1+IiYWYyr/txfn7yUQtX4jyaTiWVapReVdOz2nM+pVoM1V4rd5C5d+CsK5Tj4hZuhERrVKJOikx+5OlkJOlUqExMHmuqGrwmPg17dJu4TF+KE59Oum+T/waiXMZ2iReR+Ks6+WJ+/0CTwLWUv/EZnyfnEX+NIpH03Na83/3+Q7b2lVpHXeFirPGcq3nKKPTEwJEBPyCqYWYGgePUm7aDCIC5qEIC0NW/RNq/X462y5y2WK0KhXVduyixqFj2DZoSOjEH7LXl2jTlhr7D1Hj4FGsa9flgf+o7BAqY6hZux6dun3O9Imj+frL7pQqbU/PPgOz1/sP78eFM7r85ba2doydOJPtW9bwRa/2PHpwl2/HTcu27dlnIA4OZRn+ZXemThhJx66fG5WeEKBG7fp07NabGRNHMeLLbpQs7UCPPoOy148Z3jdbh42tHd9NnMmOLasZ2KsdoQ/uMnrc9Gzb82eO069rC9Yu/5X7d27Sr2sLVi/Jv6cGYOTwYShVKj7r3Y/Z835l1IivcXN14dbtO3Ts9lm23a3bd+jQpTuTp07nRVwcHbp0Z8KPOakzFyxeSocu3Tlz7jzbA3fSoUt3Tp0+a1QdvKZSjcb4+g1k2U9fMn1kK4qXcqRd9xHZ6+eM7cS1izmjLrO/68C4AbVJfhnLqp+HMm5AbRLjc0b8bl85jdTKGo8q3hjDmK8GoFKp8PtyBNMWLGfMVwMo5+LEzbsPaNV7SLbdjbsPaNFrMN/PDCA2PoEWvQbjPyNnLtNvQUf49IsRdP3qWxISk5g9fvRb1YP/sEGoVCo69x/KjF8X4z9sEO4uzty8c4+2PXMmkN28c4/WPfozfsZcYuPiad2jP2Onzcpe/+3QL5FKJHT98muGj/uRFk0b0b6lcW/s8x82GKVKRZf+X/HTr4vxHzYYdxdnQu7co23P/rk0tOnRj/Ez5hAbF0+bHv2yNWTI5SxYsQ6/PgPpMfBr/vr7JnOnTMDWxjq/3RZJHUVBA8DYwX1QqlS0H+zP1IVr+H5IX8o5l+XGvYf49s35n6zaHkRyWjoDf5iFb98R+PYdwdzVWwAIefCYP66FcPnmXVoPGJW9/sa9/LPBCRQtTLRGjp94eXlx/fp1rKysePbsGd26dePyZd0LYy5fvszcuXPZu3cvUVFRjB49GoVCgb29PcWKFcPNzY2hQ4fSu3dvBgwYgJ+fHxkZGXTv3p3x48fj4+NDbGwsTZs2ZeHChbRr144jR47g7+/PhQsXsl8h+qYGX19fVq5cSYUKFQBy/b569Wp2vE/dunU5c+YMq1atyrbNS2pqKkOGDCEjIwNvb28mT57M+fPnWbBgAWq1muLFizNjxgxcXV1Rq9WMGDGCqKgoypUrx+LFi5k5cyanT5/Gzs4OHx8fgoKCOH36tF49FUb8lEGFG71nrDz/2VD4uyY0UP/lN/9feXq84BnzH4LS9YyLgX3fiDcc+NgSyKJo9MDYmbz82BK4k1I0XgpSV/x2KT7fBxqR4RcyfWi0ReT6FNAhVqUWbvQBKF79308i/Lcodr67+XIAks/GvtPyPgZGO+EC7x/BCc9BcMJzEJzwHAQnPAfBCc9BcMJzEJzwooXghOeg2BXwTsuT9BjzTsv7GBTxACIBAQEBAQEBAQGB/z3+X722vmvXrnqTiz755BNmzJjxkRQJCAgICAgICPw/oKhPHP0I/L9ywvfu3fuxJQgICAgICAgI/P/jI6YoLKoINSIgICAgICAgICDwgfl/1RMuICAgICAgICDwEfgfye39LhGccAEBAQEBAQEBgfeLEI6ih+CEFyFk1Sp/bAkglnxsBQBIbKUfWwLR1z9+akAoGukBX1w2/gU+75PSWR8/DZyZaf5vrfyQmGuUhRu9Z6TmRaMuikJ6QNOst3uj6PvCRPvxdRSF8wFgos362BIwV6V/bAkCRRjBCRcQEBAQEBAQEHi/mAjhKHkRnHABAQEBAQEBAYH3i5CiUA+hRgQEBAQEBAQEBAQ+MEJPuICAgICAgICAwPtFCEfRQ3DCBQQEBAQEBAQE3i9CdhQ9hBoREBAQEBAQEBAQ+MAIPeH/AZIzFEzdd57g0GfYWUoY1dqb9p945GufqdbQY9ke0pWZnBjXJ3u5JiuLFaeuEXT9AenKTJxL2LB2YAdspGLjNOw8SfDDp9hZSRnVviHta3oVrGHBNtKVKk5MHgRAeFwiCw5d5GbEczRZWqo42/NDJx/cShufgs/USob9kG+xrFYLTVoKCYEbSf3zrJ6d47gZSL2qZP82MTND9TyKpz8MB0DiWYlS/b7CwtGZzLhYXmxYhuLhXaM0mNna4DVzGnYNG5CZlEjY/CW8OHxUz05kbY3HxHEUb9IIgOjtO4lYtlLPzrZubWpsXkfEyjWEL1pmlAaRtQ3uEyZiU7ce6uQknq1awcsTv+vZmZib4zLaH7umzTAxE5F26xbhv8wlMz5OVw+ubrh+NxZLr4qokxKJXL6UpPPnjNIA4Dq8D079u2JdtQLRgYcIGTQhX1v30QMoN3YIIkspMXuPc3vEVLJUmQBIXcvyydqfKeZdHfnT59wePYOE08FG6wA4un87h/ZsRqlU4N3Qly+Hj8fc3HCqtNs3r7Bp5S8kxMVQ3qsKQ0dPoWTpMrls0lKT+f7rzyhT1oUpc9cYreNw0A4O7P4NlVJBvUbNGTRibL46bt24yoaVAcTHxeJRoTJf+0+mVGkHALasW8q1SxdISkqgeIlSdO7Rn6Yt2hW475TUVH5ZsoKrf4dga2PN4P69aenTRM/u75DbbA7czaPHT5DJZOxYu9xgeTdu38F/4jT6ftaVQX0/N7oOXnPy4BZ+378RlVJBrfot+fyrSQbrQp2ZybpFE4h4fIeXcc/xn7YGr6p1s9f/vn8jl84eJCHuOTKbYvi0+YzWnb4ocN8pqWnMXbKKqzd0dTGkXy9a+TTWs7secodNgXt49CQMa5kVgWuW5lrfc8g3vExKRvRqUlmVihUImD7J6DpISU1jzrI1XLlxC1sbGUP79qRV00b6Om7dYePOfTx8Eo61lRW7Vi/KXhcbF0+/UeNy2csVSkZ80ZtenT41SsPPy9Zx5eYtbK2tGdq3B62bNjSg4S4bdu3P1rB71fxc6x+FRbBg7RYeR0RiKZHQqXVzvviss7FV8c7OCcDug0fYdeAoSckplC5VgtkTx+Jc1tE4DUtXvzof1nzVtyetfAyfj02B+3j4JAxrKyt2rlmsZ7Pr4FF2HTyWreHnCWNwLltGz84QyWnp/LRmO5duPaCYzIpvenagbaM6enabD53i0IW/iIlPpJi1Fd1bNqZ/hxYAxMS/pMe4n3PZy5Uqvu3dib6f+hql44MiTMzUQ3DC/wPMPvgH5iJTzvzQj/vPExi55SgVHIrjYV/coP3Gizexs5SQrszMtXzFqWvceBrL5q86UaaYjNAXiYjNRMZp2HcWczMRZ6YO5n50PCPXH6BCmZJ4OJQwrOHcdeyspKQrVdnLUuVKfKqUY0bPVliKzVl14i9GbzzE/nH9jKwJKP3FcLQaNU+G90bsWg7H76ejjHiCKuppLrvoeVNy/S47aQ7yuzcBnSPvOGYqL9YvJe3Kn1g39MFx7FTCvx1EVkZaoRo8f5xAVmYmfzbxRVbRi2orl5D24CEZoY9z2Xn8MBaRRMLllu0xL16cTzasQhH9nNh9+7NtTMzM8JgwjpSbIUbXAYDrmLFoM9Xc6NgeS88KeM4LICP0EYqwsFx29j16IqtajdsD+qJJT8Nt3A+4+o8hdNIPIBLhOWceL4L28cB/FNY1auI591fuDOyPMjLSKB3K6BeEzl5OqdZNMC2gMVeyVWPKf/8Vl1oPQBH9gjq7l+I5dRQPJgUAUHNrAImXbvCX3xBKt/OhduBizlZqjSreuPzkIdcvcXD3JibOWo5d8ZIsmD2ePdvW0GvACD3b1JQkFv08nsHfTKKmd2N2/7aKJfMmMf3X9bnsdmxahqOTG9q3yDV889plDuzeyuRZi7ErUZKAmRPZ9ds6en/xtZ5tSnIS82dPZOioH6jl3YidW9ewaO6PzAzQOfwSiYTvp8yjTFlnHj+6x5wpY7B3dMKrUrV8979o5TrMzMzYu3kNoWHhTJjxM+Xd3XB3cc5lJ5GIadeyOb5NGvHb7n0Gy1Kr1Sxds4FKFTyNPv43uXPjT44HbcB/2mps7Uqzcp4/hwJX0KXvaIP2HhVr0OLTPqwO+F5vnVar5YuRMynr6klczDMW//Q1diUcqNu4bb77X7BqPeZmIvZtWkVoWDg//DQXD3dXvbqQSsS0b9kMpaohv+0OMljWz5PGUadG/vVeEPNXb8TcTMT+DcsJDYtg3Kxf8HBzxd3FKZedRCyhfQsfWjZpyJbd+3Otsy9Vkt+351yf0bEv+Hz4d/g08DZKQ8CazZibiTiwfimPwiMYN2s+Hm4ulMurQSLmU9+mtGxcny17DuqVM33BCprUq82SGROJiYtj+MSZeLi50Ni7llE63tU5OfT7aQ6fOMvcH8fj6lyW6JhYrGUy4zSs3oCZmRlBG1cQGhbO+Jm/vNKQ93yIad/ChxZNGrA1z/kAOHTiDIdPnmXej9/j6lSW6JgXWMusjNIAMHfjbsxFZvy+fCYPI54x+pfVeLqWpbxTbideq4UZw/ri4eLIs9h4vpmzAvsSdrRpUAuHksW5sP6XbNuoFwl0+e4nfL0/MVrHB0WICdfjP9Es6dSpEwqF4q238/X15eHDh+9BUf7069ePM2fOvLPyMlSZnLwbxoiWdbAUm1PLzQGfiq4cuvHIoP2zlykcvhnKIJ8auZanyJVsDb7F1M5NcbSzxsTEBE/74ojNC2+HZagyOXkrlBFt6mMptqCWuyM+ld05dP1+PhqSOXz9PoN8c7fqq7k40NW7CraWEsxFIvo1rUl4XCJJ6XKj6sJELEbm3YiEXVvQKhUoHt4l/fplrBsX3OI3K1kaacUqpFw4BYC0QmXUyYmk/XURtFmk/nEGTUoKsrr6PUN5MZVKKNmqJeGLl5GVISfl+g0SzpzDvqN+b1SJ5k2JXLeRLIUCZXQ0MXuCKNO1Uy4bpy/6kfhnMBlPwo2qAwBTiQQ7n+Y8W7uKLLmctJCbJF28QMk2+r2k4jKOJF++jDrxJVqVipenTiJxd9fVg4sr5iVKEhu4HbKySL1+jbRbIQbLyY+YoBPEHjiFKiGpQDunfp2J3LCbtLuhqJNSeDRrOU79uwBg5emGTc0qPJy+hCyFkph9v5N6+yEOXdsYrePC6cP4tOqIk0s5rGQ2dO45kAunDhm0vfLnGZxcylGvcQssLMR0/XwIT8NDiX4Wnm3z8F4IzyIe07RlB6M1AJw7fZRmrTrg7FoOmcyGrr2+4NzJIwZt/wo+h5OLO/Ub+2JhIaZ770FEhIUSFRkBQI8+gynr7IqpqSmeXlWoWKU6j+7dznffcoWC88GXGNinF1KplGqVK9HQuw4nzuiPbFSq4Enr5j44OtjnW97OoIPUqfEJLk6F9y4a4tLZAzTy7YyjswdWMhs+7f4VwWcPGLQ1MzenRYe+eFSqiamB3rI2nb/EpVwlRCIzHMq68UndZjx+cCPffevq4jKD+nyGpVRC9coVaehdm9/PXNCzrVTBgzbNm+Jon39d/FPkCgXnLv3FoM97vNLhRaO6tTh+9qKebeUK5WnbrAmO9qULLff42Qt8UrkiZUqXMkKDknOXrjC4dzcspRI+qeRF47o1OX7uD30NnuVp26wRjvaGy33+Ip7WTRsiEplS1sGeapUqEBYZVagGnY53c06ysrLYuGM33wzqh5uLEyYmJpQt44CNdeFOuFyh4FzwXwzu3SNbQ6O6tTl+Vl9D5QoetGneBEcH/fORlZXFhh17GDmwH27OrzXYG6VBp0PJ6b9uMqxHeywlYmp4ladpraocuXhFz3aAXwsqujtjJhLh5miPT+1q3Hz4xGC5hy/8Rc2K5XEsZbhz7KNjYvpuP/8D/CeOYv/+/UgkReNNjh+aiPhkzExNcCtZLHuZV5kSPH5huIdwzuE/GdmqLmKz3M71o5iXmJmacuLOE3znbMFvQSA7Lt0xTkNcImampriVygkb8SpTiscxCYY1BJ1jZNuGhTr4155EUdLakmJWxr0d08KhLFqNhsyYnJu+MuIJFk6uBW5n06QF8vt3UMe/yFmYt0VuAhbOBZcDYOnmilajRh6e0/Oedv8hVh7lDW/w5n5MTLD0zAkjEjuWwaFbZ8KXryp0v28icXZBq9Hk6q2WP36E1L2cnm3coQPIqlXHvERJTMViSrRuQ/KlAsI8TEyQltMv599iXcWTlJCcRltKyAMkDqUwL14MWWUP5E8i0aSlv7H+PtaV8w+5ykvU0ye4uuf02Lq6e5Kc9JLUlGQ922eRT3Bxy7GVSKTYO5Tl2VPdgy1Lo2HTql8ZMHQsJm/Zc/MsIgxX9xzdru4e+evIY5tXx5uolEoeP7qPk6t7/vuOeo7IVJRrSL68uxvhT5+91TEAxLyI4+jJMwzo1f2tt31NdOQTnNxyQtac3CqQkpRAWmrBDbbC0Gq1hN67jqNTPv85IDJavy483FwJi3z7ugCYOX8pHfsNYczUWYSGRRi9XWR0DCJTES5vhCj8Gx2gO/5jZy7Strl+mJFhDbq6cHHM0VDe1cVo5/lNPuvQhmNnL6JWq3ka9Zw7D0KpU71K4Rvy7s5JXMJL4hJeEvY0ku4Dh9NzyEjWb9tFVlbhI1avz8ebISPl3V3e+j/yWsOTp5F0G/QNn301mvXbdxulASAiJg6RyBTXMjkOfgXXsjx5FlPgdlqtlr8fPKZcWQeD6w5fvEKHJsaNjggUDQp1wr28vFixYgXdunWjRYsWBAcHExAQQOfOnenQoQOPH+uG4OPi4ujXrx9du3bl008/Zd68edllTJo0idmzZwMQHx+Pr68v9+7dY8eOHUyfPh2AkJAQvLy8CAnRDctPmzaNwMDAbA3p6boHtK+vL4sWLaJnz574+vqydevW7P1cvXoVPz8//Pz8mDFjBlqttsBj27t3L19++SXDhg2jffv29O/fn9jY2Oz1q1evpnv37nTp0oVhw4YRF6eLow0ODqZnz5507twZPz8/Dh8+bLD8w4cP061bN2JiCv5jFYRclYmVOHcMpUxsQUaeUBOAU3fDyMrS0qKy/oM6NiWdVIWKiPhkjoz5nIDPW7Ly9DWCQwu/+ciVBjRI89Fw67FOQ7X8H5AAsUmpzN53lrF+xj1IAEwkUrLkGbmWZcnTMZUU7MRbN25ByoWT2b/lj+5hVqw4sgY+IBJh3aQF5qXLYGpReGy8yNIyl7MIoE5LQ2SlPwz58sKfOA/5EpGlJRIXZxy6dkIkzWlMekwcl92j/jaYSqVkpefVkI6ppaWerfJZJKoXsdTYf4hax08hcXUjeoNuWFvxNILMpEQcevfFRCTCpq431jVqYip+9w1ekZUl6uScUB91cioAZtZWmMmsyExJzX08yamIrI0f2lUo5Egtc3qhXn9XyPVfGa2Uy5Fa5e6xklrKULy6to4f2olHhSq4e1Qyev85OjKwfKPs19/lea7b15ot8+iwtJIZtF27bB6u7h58UqtevvuWKxRYWub+L1hZWpIhf7vrC2DJ6vV82acnUqlxDWRDKBUZRp+Tt+HQzhVkabU08O2Ur41crsAqb11YWSL/B3Ux+buRBK5Zws61S6lZrQrfT5tNappxxyBXGNBhKSVD/vYju68JufeAxORkmjXI/1rIrUGpp0Fm9c80NKxTg7PBV2jRazC9R46nQ0sfKnka12h/V+ckLl7X+XPl71tsWPwLC2f+yKkLf3D4ZOEj0IY0yCwt37ouXiS81Gm4cYuNi+ay6KfJnLzwJ4dPnjVqe7lCiUya+z4rk0pIVygL3G71nqNotVo6+tTXW3fjwRNeJqfSol4NA1sWEUxM3u3nfwCjesJtbGzYs2cPY8eOZfjw4dSqVYugoCA6derEihUrsm1WrlzJ3r17CQoK4vbt25w/fx6AH3/8keDgYE6ePMnYsWMZNGgQlSpVokGDBgQH63rlgoODqVmzJpcuXcq69zRbAAAgAElEQVT+3aBBA4N6FAoFgYGBbN68mYCAANLT01GpVPj7+zN58mQOHjxInTp1iI6OLvTYrl27xrhx4zhy5Aje3t7MmjUL0PW+R0ZGsnPnTvbt20fTpk2ZM2cOAJUrV2bbtm0EBQWxYcMG5s6dS3Jy7p6uNWvWsGvXLjZu3IiDg36r1VikFua54qoB0pSZWIrNcy3LUGWy8Phlxn9qOKRCbK6L/R7avBYSczMqOJSgTfXyXHz41KB9Lg1iAxoUKsMajlxkfCefAst7mZbBsDVB9GxYnXYFTO7Mi1Yhx1Sa29E0lVqSpcj/Ji6pUBmzYnakXc4Z/s1KS+X5/BnYtetCueXbsKpem4w7N1C/NNyz/yaajAxEeeL+zKys0KTrP5RDZ88lS6HE+9gBqi5byIsjx1DG6Bp5JZo1RWRlRdxR/cmUhZEll2Oax+kXWVmRlaHvvLl+9z2mFuZcb9eaa62ak3juLBUCFgCg1WgInTAe2wYNqXHgCA69epN4+hSquBd65fxbNOkZmNnkOGSvv6tT01GnpWOWZxjXzEaGJjV/R+ePs8cY9FkzBn3WjHnTvkUikSJ/w7mTZ+i+S6T6jrxYKs1en20vT0citSQxIY7fDwbSo98wo47r4pnjDOjekgHdW/Lz1DFIJJa5yn79XSrVbyBJJAZ0ZKTr2W5dv5TIiDBG//BTgT3zUomEjDwNuowMOZZv6Uj/+ddV5HI5vk30J6sVxOXzhxndtwGj+zZgycwRiCWWyOU5Da/X58fQOTGWM0d3cOncIb6ZuCTfya4AUqmEdAN18U8aFdUqeSEWWyARi+nbvTMyKytC7hoOxdPTITGgQy7HUvrPG7pHz1zAp7630WVIJWI9DekZirfWkJKaxpiffuGLHp05FbiOvasXcvnvW+w9erLwjXl358TiVYfQ5139sJZZUca+NB3btOTS1fzDkwrSkJ7x9udDbKHT0LvLaw2l6Ni6BZeuFa4BdOckLY/jny5XYCXJvyMo8PfzHL54hYVjh2JhYJT50IW/8PX+BMsCyvjomJq+28//AEZNzGzXThcjWqWKbtipefPmAFStWpUTJ04AoNFomDdvHn///TdarZb4+Hju379P06ZNkUgkLFy4kO7du9OkSRP69NFl7HB1dUWpVBITE0NwcDD+/v6sXLkSPz8/MjMzcXFxMainffv2ADg5OWFjY0NMTAyZmZlIpVLq1auXbTNlyhSD279J7dq1Kfdq+L1Hjx74+fkBcPr0aW7fvk2XLl2yj0/2auLHy5cvmThxIhEREYhEIpKTkwkLC6NGDV0LdMmSJTg6OrJ69WosLPJ/UBiDa0lb1FlaIuKTcS1pC8DDmATK58ko8jQhmejEVL5cq4u5zNRkkaZQ4TtnC1uGdqaCvS5G7M2HuLHtSNdSdqizsoiIS8K1lC4s5mF0POXzTMp8GpdE9MtUvly++5UGjU7D9LVsGfkZZYvbkJKhYNiaIHyqlGNIi7p6+yoIVUwUJiIR5vaOZMbqGlhil3KonuU/PGzTtCVpV/5Eq8x9w5Pfv03klG91P0xNcVuwnqTDewvVkBEegYnIDKmrC/IIXQPGqmIF0vNMygRQJ6dwf9zE7N/u344k9ZYuprdYg3pYV61Mg/O6B5jIWgaaLKw8PbjzjX+BGhSRTzERiRA7OaN8pgtJsfTwQB6mH8Yg9fQkavVKNKkpALzYswunIUMxs7VFnZyM/HEoD0YOz7avtGI18ccMxzD/G1LvPMKmuhfPd+uyyNhUr4giJo7Ml0mk3Q3FspwzIplV9iiDdfWKRO8wHNMN0KhZWxo1y5mUt+zXH3ka9oj6jVsC8DTsEbbFimNtY6u3rZNzOS6czjlGhULOi+fPcHIpx+NHd0lKTGD8iF4AqFRKVColI/q3Y8mGQ5iKck9kbty8DY2b58SuL/5lGhFhoTRoosteEBEWmr8OV3fOn8rJqqNQyImNicLJJadn8f/YO++4pq73j78hCEkYLlxl77q3iIoKrrqq4t5b66jW1q11a7Vqnbj3XlhwawVx711XVaaIgDhYGYz8/ogGIQFCXXz7u+/XK69Xbs6Tcz95nntOnnvuuefu3b6OW9cuMXWuL1Jp7smrtVUZ0jPSefY8Gut3Uw+ehIVhn+2Gs7y4cfsuj56E4NNrAADJKSkYGhoSEhbB7Mnjcvyee/2WuNfPvDdi/eLxPAv7hxp11P55FvYPFkWKY2ZeJKcqcuV8oD/H/9zALzM3ULR47vO3bb7R4YvQcBxs8ucLnRigvltOD2y+KU16RjqRz19g8416MOZJWMS/1qFQKAm+cJnZ43LvI7JqKJODBqt87ft5TCyGhoY091KvZlLSshiN67lz6cZtfJo31lvHx8bE1uobChkZZT0h1XNUNDMe0di80/A0LDzfbcTWqgyFjIyy/InmZ2DWrnQJ0tMziHgRi+27Oef/RDzH0Vr3gF1A8CU2HzjJmikjKFVcu/3IlUpOXr7FglH98/U7BL4+ep1KmJioz6wMDQ2zJJWGhoakpaUBsHHjRhISEti7dy8HDx6kcePGKBSZl1aePn2KqakpcXFxmu8A1K5dm1OnThEfH4+7uztxcXEEBwdrkunc9ACIRCLS09N12uV3PueHqFQqhgwZQkBAAAEBARw6dIhdu3YB6qkytWrV4uDBgwQEBFC6dOksv7VKlSo8fvxYr5H4vJAaF6JROXtWBF4jRZnKzfAXBD8Io1WVrCsWOJcsxvEx3dkzrD17hrVnatv6FDeTsGdYe0oXNsWmuAXV7EqzNvgGyrR0QmJfc+zuU+q76TEP2rgQjSo4seLEJbWG0OcE3w+hVbVvs2ooXZzjk/qyZ1RX9ozqytSOjShuLmXPqK6ULmJGklzBD+sCqGL/DT+1yN8oG4BKoSDp6gWKd+iBgYkJYtdymFavTeK5IJ32BoWMMXP3JOGM9kiNiZ0jiEQYSiRYdhtA2quXpNy9kaeGDJmclycDsf9xCIYSMRZVq2Dp3ZCYA9pTksQ21hgVKQyGhhTzrEuZTj6Er1oHQNgSX640b8M1n85c8+lM/KnTRO/bz6NJU/PWIJfz+nQwVgMGYigWY1axEkXq1eflce1lEpMfPKD4dy0QmZpiIBJRsl17lHGxpL27ciNxcsbA2BhDExNKd+1GoeKWvDyie3qVLgxEIgxNjDEQGX7wXnvFnahtAVj37YBZWSeMCpvjPHEIz7aoV+VIfhxGwu0HuP46DEMTY0q1aYxFRTde7D+ut456Xi04/dcBoiJCSE5KJGDPBjwb6b6psoZHQ55FPOXKhSCUSgX+u9ZjY+/MN9b2VK7uwaJ1/sxeso3ZS7bRvtsg7B3dmL1km1YCrov63t9x6sQhnkWEkpyUyJ+7N9GgcQudtrU86hMZHsLl86dQKhX47dyIrb0TVu/uTfDfs4XzwX8xefYSnUl8diRiMZ4e7mzcvhuZXM7d+w+5cPkqTby0r0xlZGSgVCpJS08HlQqlUklqqnp6Wb/uXdi6agnrlsxn3ZL51KlVg1ZNGzNu5FCtenKjdoPWXAjy53nkU1KSEzjqtxaPht/naJ+aqiRVqe5H09NSSVUqNFMKL585TMDOZYycsooSpfJOmCRiMfVr12L9jr1qXzx4xPkr12iqYx51RkYGCqWStPQ0VCpQKJWkpqr/o2LiXnL3wSNSU9NQKJXs3H+QtwmJVCir3xU8tY6arN+5D5lczp0Hjzh35TrNGmovy6fRkZaGClUWHe85c/kq5qamVKtYTq/9qzWY0MC9But27UcmV3DnwT+cu3qDZjqW5cv0RToqVVYNNt+UARWcOHOBjIwM4l+/IfD8ZZzsdA+W6fbFx8dEbGKCVz0Pdu4/QEqKjNiX8Rw6HkidmlX11FCTDe/icVcTj1w0pKWjQluDd73a7PzzECkytYaDJ4LwqJG3BrUOE7xqVmLVvqPI5ApuPQrh9PW7tKinPTB19Pw1Vuw5hO+EoViXtNRZX/DVO1iYSqlR7t+tZPSlUBkYfNLXf4FPNp6fmJhIiRIlMDExISYmhsDAQE1ZZGQkc+bMYdu2bdja2rJ48WJNWe3atVm7di1Vq6oP3mrVqrF27docp6LkhKOjI3K5nGvXrgFw7NgxEhIS8vzejRs3CAsLA8DPz4/atdVzrby9vdmxY4dmmolSqeThw4ea32plZYWBgQHnz58nPDzrSKynpyfTpk1j0KBBPH6sexWT/DCpdT0UaWl4/baV8XsCmfS9J86linEjLJraM9Tze41EhliaSzWvwhITDAwMsDSXata3ndu5EdFvk6g/ZzPDtx5jWKMauDvpNxoyyccLRWoaXtPWMn7HMSb5eOFcujg3QqKoPWllpgYLU82rsFSMgQFYWpgiMjQk6O8Q7kXGEHD1PrUnrdS8ol8n5rH3TGI3+mJgbILjip2UHjaWuI2+KKMiELuVx2m9XxZb0xoeZKQka5Ym/JCirTrguGoX9ku3YFS0GNGLZuqt4fGMORiaiKlz7hRlF/zG4+lzSHnylMLVq1Lv2gWNnXn5ctQI2Eu9a+dxGDWCB2MmapYxTE9JIfVlvOaVIVeQLpOR9jbvYxYgfOF8DI1NqHLwKI7TZhC+8HfkoaGYVapMtROZJyWRvktRKZVU3LWXKoeOUdijDk8mjteUF2/2HVUCDlHl4FHMq9fk0agRqFK15/rnhPPEITRPuovzuMFYd2+jfj9xCGKbMjR7fQOxjXq0Ke7EWUIWrqP2X1vwDglGFhHF4+mZ6+7e7P4zhatXoGncVb6dPZrrnUfovTwhQOXqHrT06cnsSUMZ2f97ipcsTftuAzXl44Z14XzwMQAsChdl5Pi57N26isHdmvDkn3sMHzMLgEKFjClStLjmJTU1QyQSUaSofqsNVKlem+/bd2fmxB8Z3tcHy5Kl6dg9c3Rq9NDunDt1XKPj54mz2b11Df27fMeTR/cZMXaGxnbXltW8jIth5MDOmikvf+7ZnOv+f/phAAqlEp+eA5i1YDE/DRmIg60Nd+49oHmnHhq7O/ce0KxDd8ZPn0NM3EuadejOmKlqH0ilEooVLap5mRgbIxabYGFurpcP3lO+al2atunDomkDmfhDc4qVKEOrzplLNU7/yYfLZzJP+KaOaMOP3dx58yqWpbOG8mM3d+Lj1AMZB3b5kpT4lrnju2umvGxfPSvX/Y/6oT9KpZK2vQYzY8FSRv3QHwdbG27fe8B3nXtr7G7fe0DTjr0YN2MeMXEvadqxF6Onqaclpshk/LFyPa2696dDv6FcuXmL36eMp7CF/r74ZVBfFEol3/cZyvQ/fPllcF8cbK25ff8hTbv2y9Rx/yGNO/dlzKz5xMTF07hzX36ePjdLXUdPnaVZw3r5HmD6ZVBvlEolrfsOY9qiFfwyqDeOttbcvv+IJh+0k1v3H9GoywDGzFpIzMt4GnUZwKgZ6vu7TKUSZo8bwZ6Dx2neawh9f/kVR1trenfM+cQqO58iJgA/De6LRCzGp+8Qho79lUb169KisZdeGn4e3A+FQkmb3kOYvnA5Pw/up47HvYc069L3Aw0PadKpD2Nn/k5M3EuadOrDL9My1+T+aVAfJGIT2vUdxpBxU2lcvy4tGzfU2xfj+3ZEoUylydDJTPLdzIS+HXGyLsPNh0/x7Je5TOfKvYd5k5RMr18X4tlvDJ79xjBn/e4sdR06e5UW9Wp81MDjF0FYHUULA1Uedy+6ublx48YNTE1NefbsGe3bt+fy5csAXL58mXnz5rF//36ioqIYOXIkcrmcUqVKUaRIEezt7Rk8eDDdunWjd+/etG7dmpSUFDp06MC4ceNo0KABMTEx1K9fn8WLF9O8eXOOHDnCqFGjOHv2LCVLltTS4O3tzapVq3B1dQXIsn3t2jXNjZ41a9bk1KlTrF69WmObnf3793Pw4EHEYjHh4eFYWloyf/58Sr1bFmnTpk34+akTO5VKRdeuXenevTvnz59n+vTp6mXAKlbk7t27TJw4EXd3d3r27Em/fv3w8vLi+vXrjBs3jqVLl1KuXN4jF/K9C/WJ2eflM9yU92+I3K3/aOzn4vmNj7+S8SmQFv/6MYm9rH9C/Dkp+fflry0BI8O0vI2+AKUyvv7x+UhZMEbeyhbSb47258QwQ/cV2S+Ngerr60gXfdw0zE+FQT7W+P9cSJPjvrYEAMxr5Lym/pdCdmr7J61P4tU9b6MCTp5J+H+Z/fv3ExwczNKl2k/C+hoISXgmQhKeiZCEZyIk4ZkISXgmQhKeiZCEZyIk4ZkUiCQ8eOcnrU/SMP9P8S1oCE/MFBAQEBAQEBAQ+Kz8V+Zxf0r+XyThPj4+WjdvVq5cmRkzZuDj4/OVVAkICAgICAgICPx/5f9FEr5/f95LzwkICAgICAgICHwm/iM3U35K/l8k4QICAgICAgICAl8RYTqKFsJpiYCAgICAgICAgMAXRhgJL0CkuNX62hJIlJb82hIACOo97GtLwH1awbir3ZCvv4BRyYyCsdpBbIWcH+L1pTB3034E/dcg3U/3Q6q+JGIj/deU/5wkFfp3T+H8lLxMLfa1JRQYxCLl15ZQYJCbOX9tCQDU/toC4D/zqPlPiZCECwgICAgICAgIfFaE1VG0EU5LBAQEBAQEBAQEBL4wwki4gICAgICAgIDA50VYHUULIQkXEBAQEBAQEBD4rKiEJFwLwSMCAgICAgICAgICXxhhJFxAQEBAQEBAQODzItyYqYWQhP8P8DYxiTkrN3Plzj2KmJvxQ7f2NPPUXqptW8Axjp6+wIu4eAqbm+PTrCE92nynKV+9y58zV24SHhVNn/YtGdCpjd4aEhIT+WPJMq7fuElhCwv69emFd8MGWna3bt9h+87dPH76FHMzM7ZuXJelfNPWbVy4eJmIyEi6delEr+7d8uEJNdeDNnH15FrSUmW4VGlGo07TMSqkvYRefPQTjm0dy5uXkQCUsimPV4fJFC+jXjLq6sl13L/iT8KrKCSmRans2Y2ajQforeOw/24C9m1HqZDjXrchA4aNppAOHQB3b11jw6o/eBkXg7NrOYaOmkSJkqUBuHg2kCMBewkLfYyzS1mmzl2ut4ZD/rvx37cDpUJO7boNGTjsl1w1rFu1iJdxMbi4lmPYqIkaDampStb6LuTS+WCMTcS0ad+V1u266K3jaMBODvltQaGQU6uON32HjstRx9+3r7J51Xzi417g5FaewSOnYFmyTBabpMS3jBnSiTJWtkyZtzbXfdsN7Y51Lx/MK7jyfPch7vSfkKOtw8jeOI4eiEgq4cX+4/w9bCoZSvUyexI7Kyqv+40itSohi4jm75EziA+6qLcPjCwscJ05laIeHqS+eUPo4qXEHTmmZScyN8N5/FiK1qsLQPTuPYSvWK0pr7RhDVJnZwyNCyGPek748pXEnwrWWweo43HQbysKhRz3Ot70HTo213hsWrXgg3j8Sgkd8Rg9pDNlrGyZOm+N3jqOH9jB4f2bUSoU1KzjTa8fxueo4/7tK2xZ8zuv4l7g6FqBASOmZjku7t2+zJ7Ny4iOCsfUzIKufX+iVr0mOe47MTGRJYsXcePGdSwsCtOnT18aenlp2alUKjZu3MCJ4+pYNW32HX379sPAwIC///6bqVMmZ7GXy+VMnDiZuvXq6e0HgGMBOziyfwuKd77oPSTnNnLv9hW2rla3EUfXCgzM1kbu3brC7g990W8k7rn4oiBpgILRdxYEDVBwYvIlEKajaCN45H+Ahet3UMhIxOG1fzBtxEDmr91GSGSUDksVU4b35/impSya9BN+x4L46/wVTal16RIM79mBOtUq5VvD8hWrKGRkxJ7tWxg/5heW+q4kLDxCy04sFtOsaWMG9uujs55vypRhQL8+uNeskW8NAGEPznL15Bo6/LiJAdNP8fblMy4eWarT1rRwSVr1X8rQeVcYMvcSjhW9Obxp1AcWKr7rOY9h867iM3Qdt85s5+H1w3rpuHX9MgH7tvHr7MUs37iP2BfP2bt9vU7bhLdvWDhnEp16DGD9ziM4uXzL4nlTMnWaW9CiTUfadOihtx/ea/Dft52psxezYuM+Yl48Z/f2DTlqmD9nMl16DGDjzsM4urixaN5UTfme7RuIfv6MFRv3Me23JQT47eTm9ct66bhz4xIH921mwixflqwPIDbmOX47dCfOiQlvWPLbODp0H8yqHX/h4FyWZb9P0rLbtdmXb6zt9dq/4nksT+as4Nkmv1ztLJvUw2nMIC4360OQkxdSB2tcpo7QlFfdtpC3t+5zopQ7j6YsovrupRhbFtVLA4Dz5AlkpKZysUEjHo6biMuvE5E6OWrZOY0djaFYzJVmLbnZtQclW7ekVNvvNeVP587nklcTLtT25PG0mbjNnYWxpaXeOu7cuMSBfVuYOGs5S9f7ExsTlWs8Fv82no7dB7F6xwkcncuy7PfJWnY78xGP99y9eZHDfpsZN2MFC9ceIPZFFH/uXK3TNjHhDcvmjcWn2w8s3xaIvXNZViyYqCmPigxh1R+/0r77EFbuOMXMRduxdyqb6/5XrFiOkZER23fsYszYsfj6LiM8PEzL7tjRI1y6eIHlvitY7ruSK5cvc/TIEQAqVKiA335/zWvqtOlIJBKq18hf/3X3xkUO+21h7Exf/lgXQFxMFH/u0H0yk5jwhmVzx+HTfTC+20/i4FyWFfMz20hURAgr//iV9j2GsGpnELMWb8vTFwVFAxScvvNra4CCExOBr4eQhBdwZHIFpy5dZ1CXtkglYiqXdcGzRmWOndYeoevRpjlujnYYiUTYWZXGs2YV7jx8oilv2bAuHlUrIpWY5FODnHMXLtK7Z3ckEgkVypfDw70WgUGntGy/dXOlsbcXZUqX1llX08aNqFWjOhKJJF8a3nPvsj8VanfAsowLYmlhan83lHuX/9RpK5ZaULi4NQYGBqBSYWgo4k1c5olDzcYDKWVTHkOREcVKOeJUqRHPQ27opeNM0FG8mrTCxs4RMzMLfLr0IfjkUZ22Vy6exsbWAY963hgbm9ChWz/CQ58QFRkOQKUqNfHwbETRYvonWgDBQcfwbtISGzsHzMzM6dCld44aLl88806DF8bGJnTq1o+wDzScDjpGhy69MTMzx9rGnsbNWhN88oheOs4GHaZBk++xtnXE1MyCtp37cTbwkE7bqxdOYW3riHu9Rhgbm+DTdSARYU94/ixMY/PPgzs8C39K/cat9Nr/C/+/iDkQiDL+Ta521j3bErlxH0n3n5D2JoHHs1dg3asdAKYu9lhULc8/05eRIVfw4s8TJP79D6V9mumlwVAixrJJI8KXrSBDJiPh5i3ig09TsrX2byjesD6RGzeRIZejeB7Ni/3+lG6XeVUq+Z/HkJ6u3lCpMDQywqR0Kb10AJwJOkLDbPE4E6j75PLqheBs8RiQQzxCaKBnPN5zPugw9Rt/j5WtE6ZmFrTp1J9zQbqPi+sXg7CycaRW3cYYG5vQrssgIsMea3Qc3LOBhk3bUal6XUQiI8wsilCyjHWO+5bL5Vw4f56ePXshkUgoX74C7u61CQrSfsDRycCTtPNpj6VlCSwtLWnn48PJk3/prDfw5Enq1q2HWCzOly/OnTpM/SbfY/3OF9936pejL65dPJXVF10HEvGBLw7s3YBXs3ZUrl5H44tSufiiIGmAgtF3FgQNUHBi8sUwMPi0r3wQGhpK586dadasGZ07dyYsLEzLxtfXl5YtW9K6dWt8fHw4e/aspmz8+PHUr1+fNm3a0KZNG1auXPmx3gD+I0n4kiVLOHJEv4RBF8uWLUOp1O8JX5s2bSI+Pl4v2549e3LqlHaimh8iomMQiUTYfpOZ1Drb2xDy7Hmu31OpVNx68BgHm28+av8AUVFRiESGWFtZaT5zdHAgLEJ7JPxzEx/9mBJW32q2S1i5kZL4Elny6xy/4zu2Bkt+rkTQvpnUajpYp41KpSLq6TXNVJW8iAwPxc4h09bOwZm3b16RmPBWy/ZZNluxWEKp0lY8iwjVa185kb3e3DSo9Tpl0VC6tBWREaEkJSXy+lV8trqciIwI00tHVEQIdg4uH3zXJWdfRIZga59pm+mLEAAy0tPZvHoBvQePVp88fULMy7uQcOehZjvhziPEpUtQqFgRzMo5IwuJJD0p+YPyh5iX0+94kNjZoUpLQ/bB1aHkR/9g6qw9Eg5gwAe/zcAAqXPW/ZT3XUK965eoumsbb65eI/Hefb10gDoetllimVc8dB2bWePRZ/BoyGc4oiJDsPnguLBxcCXhzSuSErRPltS2rpptE7GEkqWtiHqn4+k/dwGYPKILI/t+x+pFv5KUqP17NPVFPUMkEmFlnZmEODg6EhEermUbER6Og0NmnBwdHImI0LaTy+WcP3+ORo0b5/azdeuJyHrc2zq48jYnX0Rk9ZuWLx79DcCkEV0Z0ac5q/6YkqsvCpIGKBh9Z0HQAAUnJl8MA8NP+8oHU6dOpVu3bhw/fpxu3boxZcoULZtKlSqxb98+Dh48yJw5cxg1ahRyuVxTPmjQIAICAggICGDIkCEf7Q4oYEl4Wlrav/reyJEjadGixb/e7/Lly0lN1e/xy1u2bNE7Cf8UyORyTCVZR13MpBJSZPIcvqFm3Z4DqFQqWnnV/XgNMjlSSdZHdZuaSpHJZB9dd35JVaZgLDHTbBtLzAFQypNz+grDfr/G8N+v4d3hV0pal9Npc/HIMlQZGZR3b6+XDoVchtTUVLMtNVVrkslStGzl2Wzf2+uyzQ/qejN9kbcGsyyfSU1NkclSkL+zz/575Hrqk8tlSKSZdb9/L5dpx0QhkyHJpkMizdzX8UN7cHYtj4Pzp7+MKjKVkvY2SbOd9jYRACNzU4zMTElNSMxin/Y2EZF51rjlWLdUSnpy1t+blpiEyFT7+6/OX8BmQF9EUiliGxtKt2uDKFsbvzdsJOfd63H3h+G8vnAJVCq9dMC7WOsZD7lM+7iQSE01x9DxQ3twci2Pg/O3Wv8KtPcAACAASURBVN/NU4csRedxofP4lMmQSLP6Sn1cqDW/io/lQvBRho+bx7wV+1EqFGxbOz/HfctkciTS7H2WaQ5tQ45plmPfFJlMhiqbzy+cP4eFhQUVK+Z/Op9cnvW4z80XCnlKlvi9t3/fRt774sdxc/l9pR+pSgXb1iz4n9Cgrvvr950FQcP7ugtCTP7rxMfHc//+fVq1Ul/Na9WqFffv3+fVq1dZ7Dw9PTVX6d3c3FCpVLx5k/sV1o/li9yY6ebmxrBhwwgMDEQul/Pzzz/TrFkzTdnw4cMJDg7G09OTAQMG8Ntvv/Ho0SMUCgXu7u5MmDABkUhETEwMs2bN0lxGaNWqFYMHD2b8+PFUqFCBHj16sGzZMp48ecLr16+JjY3FxcWFOXPmYG5urlPb9OnTAejSpQuGhoZs3boVpVLJ1KlTiXg30tu/f3/atm3LypUriY2NZcSIEZiYmLBw4ULi4uJYvHgxCoWC9PR0fvjhB1q2bPnJfCcRi0nOlnAny2RIJTlfDt17NIijpy+yauZYjAsV+ngNEjEp2TqFlJSUfz2lJD88uHqAk7vUc5etnKpTyFiKUp6ZSL1/byzOPVkqZCKlcr2urJzgQZ/JR5CaF9eU3Ty9jftX/On80w6dN3gCnD11grW+6j/9suUrYSKWIEvJTGrev5dkO1kB9chJSkrWBEiWkqzTNjfOnjrBat8FGg3ifGqQZdOgjqEU8Tt7WUoKxsYmmrrEOeg7H3yMDSvmAuBWroq6bpm2DrFEOyYmEm0dMpl6X6/j4zhxcDczF23OxQv/nvTkFIwsMv/E3r9PS0wmLSkZI/Osf3BGFmakJ+Z8cpel7pQUrYRbZGamlZgDPJ3zO84Tx1HzSACpb94Sd+QYJVp8p2WnSkvj9bnzWPXoiiwiklfBp3Xu+3zwMdavmAeAW7nK+YqHWGc81MfF6/g4jh/cw6xFm3L/8e+4cPoom1f+BoBruSqIJVLkH9QtT1G3VZ3Hp0SSxVZtn6zRbGxsgmej1pS2sgOgdYe+/D51WI5aJBIxshRdfZautiEm5QPb931b9isxJwNP4t2osV5XaC4EH2PTh74QS5ClZPZbufnCRCzNEj9Qn0C9b4/GxibUa9RK44tWHfrw+5ThBVIDFJy+82trgIITk6/Fp35sfUJCAgkJCVqfW1hYYGFhodmOjo6mVKlSiEQiAEQiESVLliQ6OppixYrprNvf3x9bW1tKfzC1duPGjezevRsbGxt++eUXnJycdH43P3yx1VEMDQ0JCAggJCSErl27UqNGDYoXVydCJiYm+Pmpb6qaNGkSNWvWZPbs2WRkZDB69Gj8/Pzo1KkTo0ePpkGDBixbtgxA6yzmPdevX8ff3x9LS0smTJjAihUrGDdunE7bqVOnsmPHDnbt2qUZDfnpp59wcXHB19eX2NhYfHx8KFeuHEOGDGHv3r0sXboUV1f1pdMSJUqwY8cORCIRL1++xMfHh3r16lG4cOFP4jfbMqVIT08nMjoGmzLqeaGPw57haK17msnBoHNs9T/KyhljKVlc98GVX6ysrEhPzyAq6jlWVur9hoSGYW9r+0nqz42yNb+nbM3Mm9YOb/qFuKhHuFVTX/mIe/YQqbklEtO8b6BTqTJITZWR9CZGk4T/fXEfV0+uodPI7ZgX1T2PHcDTqymeXk0120vnTyM89Akeno0ACA99QuEixTC30I67tZ0DpwMzV8mQy2XEvIjC2tYhT825aVg8fzphoU+o4+kNQFguGmzsHDgdmDnn8b0GG1v1fPKixYoTFvqEylVrauqysbXXqaNuw++o2zAzafRd8CsRoY+pXU99mT4i9HHOvrBx5GxQ5tQxuVxGbPQzrG0defr4Pm9exzNumHpVFqVSgVKpYFiv5izbeAjDdx3ovyXx3mMsKrkRvU/tB4tK3yJ/EUfqqzck3X+C1NEGkZmpZkqKeaVveb5L9/zM7MjCwzEwMkJsa4v83cm7mZsryU9CtGzTEhJ4OD7zhir7kcNJvHsvx7oNREZIbHKe25k9HssXTMlXPM4EZc4X1xWPscO6ApnxGNqrBcs3HtSKR50GzanToLlme9XCyUSEPdasYBIR9hiLIsUwsyiipcPKxpFzpzJ1KOQyYl88w8pWPU3Exs4l6xTQPP7MraysSU9PJyoqCqt30+hCQ0KwtbPTsrW1syM0NAQ3Nze1XWgItrZZ7eLi4rh75w4//jhC6/u6qNPwO+p8EJOVCycTGfpYs1JFRJg6Jjp9YevIuaBsvoj+wBf2zlmmM+V0UlAQNEDB7Du/hgYoODH5anzi1VE2b97M8uXaq9EMHz6cH3/88V/Xe+XKFZYsWcKGDZkLHYwaNYoSJUpgaGiIv78/AwYM4OTJk5rE/t/yxaajdOzYEQBHR0fKlSvHrVu3NGXt2rXTvA8KCmL9+vW0adOGdu3ace/ePUJDQ0lOTubmzZv06dNHY5vTGUzDhg2xfLeaQIcOHbh06VK+tF68eJEuXdSJQMmSJWnQoAGXL+teKeLVq1eMGDGCVq1a0b9/f96+fUto6MfPFXuPRGxCQ/dqrN0dgEyu4PbDx5y9eovvGnho2R4/e4lVO/az9NdRWJUqoVWelpaGQplKRoaK9PQMFMpU0tMz9NAgpm4dDzZv245MLufe/ftcuHSZRt7ay31lZGSgVCpJS09HpVKhVCqzTPVJS0tDqVSiUqk1KJVK0t/fhKYH5Wq14e+L+4iPfoI8JYHLx1dS3r2dTtvwh+eJjbxPRkY6ClkSwX/ORSyxoFhp9dnrg6sHOHdwEe2HbaSIpY3eGgDqe39H0InDPIsIJTkpkf27N9OwcXOdtrU86hMZHsLl88EolQr8dm7E1t4JKxv1H31GejpKpYKM9HQyVCqUSoVeU7MavNMQ+U6D3+4tuWjwJCI8lEvvNOzbuQm7DzTU9/4Ov92bSUpKJCoynMDjB2nYWL8pXvW8WnD6rwNERYSQnJRIwJ4NeDbSfRNfDY+GPIt4ypULQSiVCvx3rcfG3plvrO2pXN2DRev8mb1kG7OXbKN9t0HYO7oxe8m2XBNwA5EIQxNjDESGH7zXto/aFoB13w6YlXXCqLA5zhOH8GyL+qbe5MdhJNx+gOuvwzA0MaZUm8ZYVHTjxf7jevkgQybn5ckg7IcPwVAixqJqZYp7NSD2oHYSL7axxqhwYTA0pGi9upTp4EPEavXqJRIHe4rWq4uhiQkGRkaUbNWCwjWq8fbadb10AHh6NSf4r4OaY9N/z0bqN9J9da6GRwOeRYRo4vFntngsXvcnc5ZsZc6SrXToNgh7R1fmLNmq1wlRHa8WnDkZQFSk+rg4uHcD9bx1HxfVansRFfGUq+90BOxeh7W9i2ZFlnqNWnM28BCxL56hUMg57LeZyjVyXiJQLBZTp05dtm3bglwu5/69e1y6dBFvb28t20bejfnzz/28fPmS+Ph4/tzvR+PGWZd1CwoKpGzZcpQp8+/usanr1ZIzJzPbyIE9Ofuieu2GWXzhv3sdNh/4wrNRa84GHiT2RRQKhZxDfpupUjPv5RILggYoGH1nQdAABScm/6v07t2bwMBArVfv3r2z2JUpU4aYmBhNrpGenk5sbCxlypTRqvPmzZuMGTMGX19fHB0z7xUpVaoUhobqlLlt27akpKTw4sWLj/4NBWKdcOkHc/dUKhUrVqzAxiZrUpSs47JuQWDatGl4e3uzfPlyDAwMaNasGQqF4pPuY/SA7sxZuYkWA0ZR2MyMMQN74Ghjxa0H//Dz7CUEbfMFYPVOf94mJdNv/GzNd5vVr824QT0B+G3VFo6cvqAp27T/MJOH9qWlHvPGfxz6AwsXL6VTt55YWJgzYtgQ7O1sufv3PSZNnc4Bvz0A3P37HmMmZI7ytWrXgUoVK7Bg7hwAFi1dzl+BmSsU7Ny9h9E/jaRpk0Z6+cKhXH1qNh7A3mW9SEuV41K5GR4tMkenNs9uSa2mgylb83sUsgSC9s4k6U0MRsYmlLathM/QdRgVUk+5OH9oMfLkN+yY30Hz/bI1W9O4y4w8dVSpXpvv23djxsQRKBUKatVtSMfu/TXlvwztQduOvfD0aopF4aL8PHEWG1ctYtnCGbi4lmPk2Oka2zOnjrNy8RzNdk+fRjRo1Jyho7SX7vuQqtXdadO+K9MnjkSpUOBetwGdu/fTlI8a2hOfjj3x9GpK4cJFGT1xFutXLWLpwpm4uJbjp7HTNLadu/djre9ChvbtgLGJCW3ad6Nqde216HVRuboHLX16MnvSUJRKBTXreNG+20BN+bhhXfi+Yx/qNvwOi8JFGTl+LptXL2DlH9Nwci3P8DGzAChUyJgiRTOnCUlNzRCJRFk+04XzxCG4Tskc9bDu3oZ/ZiwjcpMfDe4c5nSllsgjo4k7cZaQheuo/dcWDCViXvx5nMfTM5e3vNn9Zyqv/42mcVeRRURzvfMIlC9zvuE3O09mzsF15jQ8TgeR+vYNj2fOIeVpCBbVqlJx1XLO11K3M7NyZXEaNwYjczNk4RE8HDeJlKfvRswNDLAbOhip0zxIz0AWEcGD0eNIevAwlz1npXJ1D1r59NDEo1a2eIwd1pU2HXtr4vHT+N/YtHohK/6YjrNrOX4cMxPQjofE1BSRyCjPeLynUrU6tGjXi3mTh6BUKqjh4UW7rpk3Rk/8sROtOvSlToPmWBQuyvBx89i6Zj5rFk/B0aU8Q37J7MfqN/6e+LhoZo7tC0CFqh70GDg61/0PHTacxYv+oFvXzlhYWDBs2I/Y2dlr1v722+8PQPMWLXjxIpphQ38AoFmz72ie7R6joMCT+LTvoLUPfalUzYMWPj2ZO3lopi+6DdKUTxjemdYd+lLnXUx+fOeL1Yum4uRaniGjZ2XxxcvYF8wYo/ZFxWoe9Bj4y/+EBigYfWdB0AAFJyZfClV+7+7Og8LZpp3kRPHixSlbtiyHDh2iTZs2HDp0iLJly2oN5N65c4dRo0axdOlSypcvn6UsJiaGUqXUsxHOnj2LoaGhZvtjMFBlv/vkM+Dm5sbIkSMZOnQoYWFhdO7cmSNHjlC8eHHc3Ny4ceOGZirIxIkTEYlETJs2DZFIxKtXr0hOTsbGxoaePXvSoEEDBgxQP1Dl1atXFCtWTGtO+O7duzlw4ADFihVj0qRJWFhY5DgdBaBatWocPXpU49CffvoJR0dHRowYQVxcHO3atWPjxo24uLjQunVrpk2bRvXq1QHw8fFh6NChNG7cmPPnz9O/f382b96Mu7s7PXv2pF+/fnjpeECELl7dOZu30WcmUVrya0sA4FiI29eWgLtD3NeWAIAhn72J5okiQ/dc+S9NbAX9Tgw+J+Zu+Z8L+jmQ+mkvt/elSc34uEuxn4oSxl/uZvmceJn6aab//RcQi/Rbbez/A/L0gtF31v7200yR/Rje3Py0fVaRqtpXtnLi6dOnjB8/noSEBCwsLJg3bx6Ojo4MHDiQESNGULFiRdq3b09UVFSW5Pr333/Hzc2NPn36EB8fj4GBAWZmZowdO5YqVap89G/4YiPh6enptG3bFplMxowZMzTzwbMzceJE5s+fT5s2bTAwMKBQoUJMnDgRGxsbFixYwPTp02nVqhWGhoa0atWKQYMGadVRo0YNRo0aRUxMDM7OzowfPz5Xbf369aNXr16IxWK2bt3K5MmTmTJlCq1btwZg9OjRuLiolwbq1asXEydORCwWs3DhQn755RemT5/OsmXLqFixomZeoYCAgICAgICAwNfHycmJvXv3an2+dm3mg8ze35uoi02bNn0OWV9uJPzD0e7PybJly0hJScl15LugIoyEZyKMhGcijIRnIoyEZyKMhGcijIQXLISR8EyEkfBM3twK/qT1FanS8JPW9zUoEHPCBQQEBAQEBAQE/rt86iUK/wt8kST80aNHX2I3ADkuS7N8+XL++kv7UcQbNmzIcWqMgICAgICAgICAwOfg/81I+PDhwxk+vGAtXC8gICAgICAg8P8B1SdeJ/y/wP+bJFxAQEBAQEBAQOArIUxH0UI4LREQEBAQEBAQEBD4wggj4QWIdNHXv4taaSD+2hIAMCwAp4cFYVUSgIxP/ICDf4ORoX5PgPvcFISVSRIfpXxtCQCI0gt9bQnI0r6+BgDX9OivLYFYkeXXlgBAWsbX7zy/vgI1BgZfvw9PTjX52hIKDMJ0FG2EJFxAQEBAQEBAQOCz8qmfmPlfQDgtERAQEBAQEBAQEPjCCCPhAgICAgICAgICnxVhOoo2QhIuICAgICAgICDweRFWR9FCOC0REBAQEBAQEBAQ+MIII+ECAgICAgICAgKfFZUw7quFkIT/D5CQmMRvvuu5evsuhc3NGdyjI03r19Gyu3H3Phv3BvBPSBjmpqbsW/1HlvLHoeEsWreVp+GRSMVi2jT1ok+ntnppSExMYMniP7h54zoWFoXp3acfDb28texUKhWbNq7nxPGjADRt1pw+fftj8O4yVHp6Oju2beGvv44jk8koU+Yb5sydj5mZmd7+uBa0iSsn1pKWKsO1SjMad5mOUSHt5R1fRj/h6JaxvImLBKCUbXm8O07GsowzABH/XOLiEV9iIu8jlhZm0MwgvTUAHPLfjf++HSgVcmrXbcjAYb9QSIcOgLu3rrFu1SJexsXg4lqOYaMmUqJkaQAunA3icMBewkIf4+xSlulzl+mt4bD/bgL2bUepkONetyEDho3OVcOGVX/wMi4GZ9dyDB01SaPh4tlAjnygYerc5fnyxWH/XRzQ6PCifx46Nq5aqNExZNRkjY6t65dz/dJZ3ryJp1jxErTt2Iv6jZrnum8jCwtcZ06lqIcHqW/eELp4KXFHjmnZiczNcB4/lqL16gIQvXsP4StWa8orbViD1NkZQ+NCyKOeE758JfGngvX2gd3Q7lj38sG8givPdx/iTv8JOdo6jOyN4+iBiKQSXuw/zt/DppKhTAVAYmdF5XW/UaRWJWQR0fw9cgbxQRf11gFw4sB2jvy5GaVCTg2PRvT8YUKO8bh/5wrb1szlVdwLHF0r0O/H6ViWLANAUuJbtq7+jfu3r2BgABWqetBz8AQkUv3aa9ChrZzw30CqUk6V2k3oMnCyTh1pqalsXDKOiJD7vIp7zshp63EtXzNLPcFHd5Cc+AYTsZRqdZrRrufPiEQ5/4UlJCYxZ8VGrtz+m8Lm5gzp0Z6mnh5adtv9j3Ik+DwxcfEUtjDDp5k33dtmHnPRsS+ZvXw99x6HUMqyGL8M6EHNyuX1+v0fcvzAdo7s36KOSR1veuUWk9tX2LpmniYm/UdMyxKTLavmcv/OFQxQx6TXD+P1islfB7dx7N1xUd2jEd0HT8wxHmsXTST86X3i46IZPWMNbhVqaMpVKhV+W5dy7qQ/APUat6V9zxGafj4vjgbs4PD+LSgUCmrV8abPkHE5+uLe7StsXj2f+LgXOLlWYNDIKRpfrF4ynYtnjmNklLlU5podQRiKRHpo2Mkhvy0oFHJq1fGm79CcNfx9+yqbV73T4FaewR9oeE9S4lvGDOlEGStbpsxbq5cfAg9u5a+AjSgVcqrWbkyXQbm1j/GEP1W3j5+mrcO1Qs0s9QQf3alpH9XrNKNdr1G5to+vgUqYjqKFcFryP8DCtVsoZCTiwIblTBn1AwvXbCYk4pmWnVhsQkvv+gzt1UVnPdMXraRyOTeObF7J8lkT+fNYIOeu3NBLw8oVyylkVIhtO/Yweux4VvguJTw8TMvu2NHDXLp4gWW+q1jmu5orly9x9MhhTfmObVt48OA+CxYuYc8+f34ePRZjY/3XRw+9f5YrJ9bQacQmBs08xZv4Z1w4vFSnrVnhknw/YCnD519h2O+XcK7ozaENozTlhYylVPBoT4N2Y/Xe/3tuXb+M/77tTJ29mBUb9xHz4jm7t2/QaZvw9g3z50ymS48BbNx5GEcXNxbNm5qp09yClm060rZD93xrCNi3jV9nL2b5xn3EvnjO3u3rc9SwcM4kOvUYwPqdR3By+ZbF86Zoyk3NLWjRpiNtOvTIlwaA29cvc2DfNibPXsKyjX7E5KHjjzkT6dRjIOt2HsXR5VuWzPtVUy4Wixkz5Xc27D7BkFGT2bxmCY8e3M11/86TJ5CRmsrFBo14OG4iLr9OROrkqGXnNHY0hmIxV5q15GbXHpRs3ZJSbb/XlD+dO59LXk24UNuTx9Nm4jZ3FsaW+q/9rHgey5M5K3i2yS9XO8sm9XAaM4jLzfoQ5OSF1MEal6kjNOVVty3k7a37nCjlzqMpi6i+eynGlkX11vH3zQsc2b+JMdNXMn/NIeJiovDfuUqnbWLCa3znjaZd1yEs23oKe6dyrFo4XlP+544VpCQl8PvqA8xdGcDbN68I2LVGLx33b53nhP96Rkxdy8wVx4mPecbh3StytHcqW5XeP87Booi2zyvWaMj433ezcMtFJi3cT1TYI4KP7Mh1/wvWbqOQkYhD65cw7adBzF+zlZCIKC07FSqmjBjAsS3L+WPyz+w7Gshf5y5ryqcsWoWLgy3HNi1jcLf2TFrgy+u3CXr54D13b17kiN9mxs5YwYK1B4l7EYX/ztU6bRMT3rB83hh8ug1h+bYg7J3LsXJB5gnd/u0rSUlKYP7qAOatCiDhzSv89YjJ3zcvcHT/Jn6etoq5qw8TFxPFgV26jwsAl7JV6P/TLArriMeZE37cuhLMlD92MXXRbu5cO8PpE7kf9++5c+Mih/y2MH6mL4vXBRAbE8X+Hbr1Jya8YcnccbTvPpiV20/i4FyW5fMnZbFp2a4n63af1rz0ScDv3LjEwX2bmTDLlyXrA4iNeY7fDt2Jc2LCG5b8No4O3QezasdfODiXZdnvk7Tsdm325Rtr+7wd8A51+9jAiKlrmLXyGC9jonJvH99Wpc+I2TrbR6WaDZkwfxd/bL3A5D/8eBaed/sQKBj8zyfhS5Ys4ciRI19bhob9+/czYsSIvA31RCZXcPrSVQZ0a49UIqZyWTfq1azK8dPntWzLuTjxXcO6fFOqhM66omNf0rR+HUQiQ6xKl6JiWVdCI7X/lLIjl8u4cP4cPXr2RiKRUL58BdzdPTgVFKhlGxh4knY+7bG0LIGlpSXtfNoTePIEAEmJiQQE/MmPI0dRslQpDAwMsLd3yFcSfu+yPxU9OmD5jQtiaWE8vhvK35f+1GkrllpQuLi1enRGpcLAUMSbuAhNeRn7SpR3b0sRSxu99/+e4KBjeDdpiY2dA2Zm5nTo0pvgk0d12l6+eAYbWwc86nlhbGxCp279CAt9QlRkOACVqtSgjqc3xYrl72EfZ4KO4tWkFTZ2jpiZWeDTpU+OGq5cPP1OgzfGxiZ06NaP8CwaauLh2Yii+dQAcDroKA2z6Th9UnebvHLxNNa2DtTW6OifRUfH7gOwsrHD0NAQF7fyfFu+Eo8f/J3jvg0lYiybNCJ82QoyZDISbt4iPvg0JVu30rIt3rA+kRs3kSGXo3gezYv9/pRu10ZTnvzPY0hPV2+oVBgaGWFSupTefnjh/xcxBwJRxr/J1c66Z1siN+4j6f4T0t4k8Hj2Cqx7tQPA1MUei6rl+Wf6MjLkCl78eYLEv/+htE8zvXWcP3UIz8ZtsLJ1wtTMgtadBnD+1CGdttcvneIbGydq1m1CIWMT2nQZTGTYY6KfhQIQF/Ocqu4NkUjNkJqaU83di6jIp3rpuBx8AA/vdnxj44zUzILvOgziUnCATlujQoXwbtkT57LVMNTxpK4SpW2QmloA6qTZwNCQuBcRWnbvkckVBF++xsCuPu/6TVfq1ajCsdMXtGx7tG2Bm6M9RiIRdlZl8KxVlbsPHwMQ8fwF/4SEM6BLW0xMjPHyqIGTnTXBl67r5YP3nA/KGpPvOw3gXFAOMbkY9C4mjSlkbELbLoPexSQMgJexz6mmiYkZ1Wo3JCoiJE8NF4MPUa9RpoZWHQdw4dRBnbZGhQrRuHV3XMpWxUBHPC4GH6Lp9z0oZlmKosVL0uT7nlwIOqCXL86dOkyDJt9j/U5H2079OJuDL65ePIWVjSPudRtjbGxCu64DiQh7zPN3vvi3nA16r8FRraFzP84G5qDhwimsbR1xr9cIY2MTfLoOJCLsSRYN/zy4w7Pwp9RvrN3v5MSl4IPU+aB9NO8wiEvBun1oVKgQ3q166N8+DAyJfRGpt5YvhcrA8JO+/gsUmF+Rlvbvnsg3cuRIWrRo8YnVFBwin0cjMhRh+03mpS8nO1u9kufsdGrVjGPB50hLSyMiKpp7j55Qo1Lel1WjoqIQiURYWVtrPnNwdNQ5Eh4RHoaDQ+YopIODExER6gQrLCwUkUjE+XNn6dG9M4MG9OXQQf067vfERz+mhPW3mu0S1m6kJL5ElvQ6x+8sG12DRT9VInDvTNybDc7X/nLiWXgodg7Omm07B2fevnlFYsJbLdvI8FDsHJw022KxhNKlrYiMCP0oDZH50JBdr1gsoVRpK559pAZddf87HdpJhFKh4Onjh1jbOeS4b4mdHaq0NGThmQlZ8qN/MHXWHgkHMPjwYREGBkidnbOUl/ddQr3rl6i6axtvrl4j8d79HPf9bzEv70LCnYea7YQ7jxCXLkGhYkUwK+eMLCSS9KTkD8ofYl7OWVdVOomKDMHG3lWzbWPvQsKbeJIStE8Onkc8xcbeRbNtIpZQspQ1UZHqeHg378jta+dITkogOSmB6xcDqVitrl46op89xdrOTbNtbedG4tt4khJzP0nJiatnD/NLLw/G9atPVNg/1GvSMUfbiOcv3vWbpTWfudjb5NlvqlQqbj/4BwcbKwBCI6P4plQJTCUSjY2zXd71ZOd5ZAg2Dpl+tnFwzTEmUZEh2Dpki0lpK6Ii1Cc/3s07cuvaWU1Mrl0MolI17emJWhoinmY5Lqzt32n4F/F4HhmCdZZjzJXnkXmfCAA8iwjB9oNjztbB9V1/ocMXEVl9Idb4InNfgUf9+KF7Y379uRdXL+g3pTAqIgS7nPMtkQAAIABJREFUD+q1c3DJuc+KzKo3e5+VkZ7O5tUL6D14tN7TcQCiI59i9YniAXD17BF+7lmHsX0bEBX+D55NOvyrej4nKgw+6eu/wGefMOTm5sawYcMIDAxELpfz888/06xZM03Z8OHDCQ4OxtPTkwEDBvDbb7/x6NEjFAoF7u7uTJgwAZFIRExMDLNmzSIsLAyAVq1aMXjwYMaPH0+FChXo0aMHy5Yt48mTJ7x+/ZrY2FhcXFyYM2cO5ubm/0rf7du3WbBgAcnJ6j/EESNG0LBhQ9LS0hg8eDCvX79GoVBQqVIlpk+frjWiGx0dzbBhwxgwYMC/PlGQyRWYSiVZPjMzlZAik+e7rjo1qjBr6Wp2BRwlPSODvp3aUtZFd7KSRYNMhkSa9XHhUlNTZDKZlq1cLkdqaqplp1KpePnyJcnJyURFPWP9hi08fx7FpAnjsLKyomq16nr9BqUiBRNx5txHE4n5u8+TkZjpvmT/44JrKBUp3Lv8JxbFrPTaT17I5TKkppk63r+XyVIwtyisZWtRuEiWz9R++bjHnyvksmy+zq8Gs4/WoK475SN9oVvHOt/fsXNwpnI19xz3LZJKSU9OzvJZWmISog/88p5X5y9gM6AvjyZOoVDx4pRu1waRRJzF5t6wkRgYGVGktjtSRwdQffrHXotMpaS9TcrU+zYRACNzU4zMTElNSMz6e94mYmKl/4i8QpaSZX7w+/dyeQpmFll9L5fLMM/2mcTUDLlM7VM7p7KkpaUyopf6/o+ylWrh/V3OyW8WHfIUxDp0KGTJmJkXyelrOVLTsyU1PVsSGx3O5dMHMS9cPEdbdb+ZNbamUikp8tz7zfW7/VFlqGjpXQ+AFJkCs2z9r6lUystXOZ/060IuS0GqKyYy7ZgoZCmYF87al0mkZsjftRE7p29JT0vjx56NAChbqSbezfOOiUIu031cyFLyHQ+5XPsYU8hTUKlUeSaiimx954c6sh+LcnkKFhZZfSGVZvYXzVp1plvfkUhNzbh78zK+8ydRuGhxXMtWzkN/Tr5I1uqzFDJZrvE4fmgPzq7lcXAuS2S4fleJQN0+JNLM3OTj20cLanq2ULeP4Nzbh0DB4YvM2jc0NCQgIICQkBC6du1KjRo1KF5cfYCYmJjg56eeSzZp0iRq1qzJ7NmzycjIYPTo0fj5+dGpUydGjx5NgwYNWLZMfdPaq1evdO7r+vXr+Pv7Y2lpyYQJE1ixYgXjxo3Lt75ChQoxdepU1qxZQ8mSJYmNjaVDhw4cOnQIc3NzFixYQNGiRVGpVIwbNw4/Pz+6du2qqfPhw4eMGTOGqVOnUqNGjVz2njsSsQnJKVmT3eQUOdJsyUNeJCQm8cvM+Ywa0Ism9T149fotk+cvo2hhC3yaN85dg0SCLCVrkpSSkoJEItGyFYvFpHxgK0tJRiKRYGBggLGJ+iSla9cemJiY4ODgSP0GDbl27UqOSfj9Kwf4a6d6/rSVc3WMTaQo5JkJjFKmfm9sop10fYixiZQq9briO96Dvr8ewdQ8fx3U2VMnWO27AICy5SshFkuQpWQmf+/fSyRSre9mt4X3/tO2zUvDWt/5Gg0m+dSQkk2DOjb50wBw7tRxjY5vy1dGLJZ+lC906di2YTmR4aH8+tuyXP/U01NStBJukZmZVmIO8HTO7zhPHEfNIwGkvnlL3JFjlGjxnZadKi2N1+fOY9WjK7KISF4Fn85x//+G9OQUjCwyE4D379MSk0lLSsbIPOsNdkYWZqQnav+e91w8fYQtq+YA4FK2KiYSKTJZZhuRv/O3WKw7Hu8T7vfIUpIQS9Q+XTl/HDb2LoyY8AcqlYo9mxazZvFkho6Zp1XXlbOH2bl6BgDOZathIpZmqVv27r2JJPe2mhcly9hRxsaJ3etmM2jMIp026n4za8KdLJMhFefcb+47cpKjpy+wctYEjAupb/STSkxIzjbgkSKT5dn/Xjx9lM0r1TFxLVcVsSRrG5GnqOMj1tFGTLLZgrqNvLddOX881nYujJi4EJVKxe5Ni1mz6FeGjp2b5TuXTh9h2+rZwLvjQizRxADQxEaXhrwQZ4utXJaEiViqs62eDz7GxpW/AeBWrsq7fivz+JTl4guxWJpFM6iPo/f9hb1T5lXRKjXqUqdBM65dPKWVhJ8PPsaGFXM1GsTZfPHe32Idx6aJREefJVPH43V8HCcO7mbmos1a38vOlTOH2blmJgBO375vHx/44RO3j11rZzN4rO728bX4r0wh+ZR8kSS8Y0f1WbqjoyPlypXj1q1bNGqkPotv166dxi4oKIg7d+6wceNGQD2qWqpUKZKTk7l586bmc4BixYrp3FfDhg2xfHczVYcOHZg1a9a/0mdkZMSzZ88YOHCgxs7AwIDw8HDKlSvHhg0bOHPmDBkZGbx9+xbxB537o0ePGD58OKtXr8bJyUlrf/nB5psypGekE/n8BTbvLq0+CYvQXC7Vl+cxsRgaGtLcSz3CU9KyGI3ruXPpxu08k3ArKyvS09OJiorCyurdZdqQEOzs7LVsbe3sCQ0Nwc1N3TmGhIZga2sHkDlN5YOOOq+rd+VqfU+5Wpk3zx3a+AtxUY/4trr6ykJc1EOk5pY5joJ/iEqVQZpSRtKbmHwn4Z5eTfH0aqrZXjx/OmGhT6jjqR4hDAt9QuEixbRGUQBs7Bw4HZg5V1sulxHzIgob25ynWeijYen8aYSHPsHDU92WwnPRYG3nwOnAzBVD3muwzqcGgHpezajnlTlHOb86zujwhbVt5hWZvdvXcevaJabO9UUqzf0PSRYejoGREWJbW+QR6ikpZm6uJD/RvjSelpDAw/GZN1TZjxxO4t17OdZtIDJCYmOdY/m/JfHeYywquRG9T+0Hi0rfIn8RR+qrNyTdf8L/sXfeYVFc3x9+6btLjV16FbuxgR3F3oJi7yVqjDXFFms0sZvYe6+xI2KJBRG72LFLlSaICNJ2Wdrvj8UF3KWYKPLLd97n4Xl2d87c+XDvnTtn7px7RmJrgZaBvjIkxbB2VaL2q49XBWjs0onGLrlP2jb+OZ3wkACcmir6SnjoC4xMyqrMuAKYWtpxLU+8eJpMSmx0BGYWtsp9B46ahp5IccPdskMPFk7/Vq0Op+adcWreWfl9+4qpRIY+p34TRV+JDH2OoXHZfzTL9yFZmZm8iSk45tXStJKacTO8wHHzhPcldnucYt1v06hQNvfaYmNhRlTMa1KkUmVISkBoOO2aNypUX2OXjjR2yc2wsuGPGYSHvsCpWVsAwkIDCmwTMwvbfDH8yjaxVFxLwkJeMHDUVGWbtGrfgwXTR6iU08ilE43y9IvNy6cTEfqChh/2i3/QHqYWtoSHvsDGoaayLFML9U9Vm7bsQNOWuTe76/6YSVhIAM556kIxXqipC0tbrlzIXdgvk0l5/SoCM8sCnuBqaJCt5unVhxrWLptFWEgAjZoprn1hIQEFj1kWtly+kLvG5b0Gc0tbggKekBAfx9SximQIcnkacnkaYwd3ZPX2E/kWiTq16IxTi9zzY9uKaUSEvsh3fvzT9viQzKxM3sSoJm/40gjZUVT54rclkjxhDtnZ2axbtw5PT088PT05c+ZMkbPYn4vs7GwcHR2VWjw9PfH19aVWrVp4eXlx584d9u7di5eXF/3790culyv3rVixIsbGxty8ebOQIxQPsUgPF+cGbNl/FKksDf+nL7hy6y7tXVTjMrOyskiTy8nIzCQ7O5s0uZz0dEWsvYVpZciGs5eukZWVRVx8At5Xb2JnZVmkBpFITOMmTdm7ZycymZQnjx9z88Y1Wrm2VrF1dW3DMY8jvHnzhri4OI4dPULrNopBv3JlU2rUqMnBA/tIT5cTHhbGJd+LNHQq/IKWlxpObjy8dpg3rwKRpSZy/e/11GzUXa1t6NOrxIQ/ISsrkzRpMj5HFqEnMaJsJcXFLDsri4z0NDIz08nOzlZ8zpCrLetDXFw7cOHsScLDQkhJTuLIgV20bKM+lZ5T4+aEvQzhxtWLyOVpHP5rB1bWdphZKG5OMjMzkcvTyMxpN7k8rVhrJFrkaIjI0XD0wM5CNLQg/GUwN3M0HPlrO5Z5NGTlaMjKzCTrIzS81+Fz9oRSh8eBHbi0UR9+lavDR62OYwd3cfXiOWbOX6n2gvghWVIZb85fwHrc92iKRRjVrUPZVi689lJ1WkUW5mgbG4OmJl81a0rlnu6EbVRkRBDbWPNVs6Zo6umhoa1NhS6dMG5Qj3e3i78AT0NLC009XTS0NPN8Vs3UELnHE/NhPTGoZoe2sSH2078nYpdicXFKQCiJD55SZdZYNPV0qejWBqNajkQfPVNsHU1aduGytyeR4cGkpiThdWgrTVupXzBWz7kVkWGB3L7uTbo8jeMHN2Nu7UBlc8XNmY19dS6fP4Y8TYY8TYbv2aOYWzmoLetDnFy6cu2CB6/Cg0hNSeTvI5to1NKtQPv0dDnp8jQAMjPSSZenKR2qq95HSHoXByhiac94bMWxZsFhSopxsz6b9x9TjJvPArh86x4dXFRjp89cus6GfUdYOWcSZpUq5NtmaVoJB2tLth30JE2eju/NOwS9DKdlo+KFz72naavOXDp/XNEmyYo2aeZaQJs0akVkWBC3rynaxPPA+zaxBhRtculcbptcPOtRrDZp7NKZK96eROX0i5OHttCkVdcC7fO2R8YH7dGoZRfOHd9DfNxrEt7Gcvb4Hpq4flNgWXlp1qozvuePExkWTEpyEp4Ht9G8gLpo0KglEWFB3Lp2Abk8jWMHtmBh7aDMQuJ31RuZNJWsrCwe3rvBtYt/U8+pRTE0dML33AcaWhegobFCg997Dfu3YmFtj6m5NXXqN2b5lmPMX7mH+Sv30KP/KKxtHZm/ck+RWVqcXbpyPc/5cfrIZhq1LLgOC2uPq+eP5js/zh7dimMtpyLrQeDLo5Gt7rbxE+Lo6MjEiRMZM2YMoaGh9OnTh1OnTlG2bFkcHR25e/cu+jmPk6dPn46Wlha//vorWlpavH37lpSUFCwsLBg0aBAuLi6MGKG443/79i1lypRRiQk/cOAAx48fp0yZMsyYMQMjI6NCHfmC9Glra9O5c2eWLVtGo0YKJ9Hf359atWqxZ88ebty4wdq1a0lKSqJfv37UrFmTRYsWcfToUS5evMj8+fMZOXIk7du3Z9iwYcWqq9jH6p12RZ7wLdx68AgjQwNGD+xNuxZNePDkOZN+X8a5nNRKdx89ZcLshfn2/bpGVdb8Nh2AOw+fsH7XAcJfRaOnq0vTBl8z8duBiPT0lPYJokqoIykpkZXL/+DevbsYGRkxZOi3tGzlyqNHD/l19gwOH1UssMzOzmb7ti2cPaOYdW3XvgPDho9QPqZ88+YNq1b+yZPHjzA2MaFnz9507KQ6+F0MsSqwnm57b8fv3GYy0mU4fN2etnnyhG//rTPO7b+jutM3PL97mqsnVpIUH4O2rh6VrGrTwu0nypspZunDXtzk4MrB+co2d3Ci7w+7AXC2el2gBgAvj/14HtmHPC0N56YujMqTG/vHMYNw7zVIOXPtf/82WzcsJ/Z1tDJPeIWKisW2PudPsW5F/nZzad2BcT8qZm2zClmAcsJjP8eP7EWeloZT05aMzKPh5zED6dZrcB4Nt9ieR8P3P85Qarh4/hTrVyz4QENHxuRoKGoRzEmP/Rw/skepY8TYyUodk8YMoFuvwcrZ84f3b7F9w5/Evo7GvkqNfDr6dmmKtrYOWtq5D+m69R5E995DAEjq3lbl2Io84b/yVeNGpL9LIGS5Ik+4Ub261NqwhqtOihvWcu3bYjd1MtqGBkhfhhHy50rirynyb4ttbXD8fa4itWFmFtKwMMI2byXO20fleEnP1cfRO8waR5XZ4/P99mLeasJ3HMHF/yS+tTsjC38FgM0PQ7GbNBJNsYhojzM8GvNBnvCtCzFxqqPIEz5hrto84SYPCr5BOOO5h9MeO5HL06jf2JXBo3PzQc+c0IvOPYYpZ88fP7jJ3s2LiYuNxtbhfU5qUwBiYyLZt2Upgc/8gWxsHGowYMQUKpoqbt6lGTpqj/8eb69dnPPcRro8ja+d29B31Cyljt9+7E579xHK2fNZYzrwNjYq3/7z1p6mbAUzdq+dxeN7l0mTpWJgVIa6jdrSte84dHQVY1ddTdW6SExKZv7abdzyf4yxoQHfD+xJu+aNuf/kBT/P/xPvvYr0fD2+n8zruHh0dXL7XPsWjZnynaLPvXr9ht/XbOFxQDCVypUtME/4c61ahdbFGc89ijzh8jQaNHZl8Pe5ecJnjO9Nl57DlLPnjx/cZM+mJTltUoMRE36lXMXcNtm7eRmBz/0hO6dNRk6mUk6bZGQVPLd29vge/vbYQbo8jXqNXBk4eoZSw+yJPenkPlw5ez7tu87Exb7Kt//CDScoV8E0J0/4Si7n5Alv3qYbPQZNVI7zIq3Cb+BPe+7lxJHdyOVpNGzcimFjpil1TBvXh649hylnrh/d92PXpqW8iY3GrkoNRk2YTfmcuvjtl5GEhwaSnQ3lK1ama4+hNG6R+7RQQ6Ng9+bUsX2cOKJoj4ZNWjE8j4apY/vyTa+h+TTs3LhMqeG7ibOUGvJyyfsEF8965ssTnigvOHTJ22sXZ49tV5wfjVrTL+/58UPO+ZEzez7z+44q58dv605RtoIZu9bO4vHdK8rzo17jtnTtO1Z5fgC0rvVxIayfg4gXBWe6+ieYV6n5Scv7EpSIEz5u3Di8vb2RSqUqCzPzOuHJycksXbqUO3fuoKGhgY6ODtOnT6dBgwbExMQwd+5cwsLC0NTUpEuXLowaNUrFCQ8KCiI+Pp6YmBjs7e1ZuHBhkQszC9Ln7+/P0qVLeffuHenp6VhYWLBhwwZSUlIYP3480dHRlC1bFnt7e9LS0vI54atWrSIlJYXRo0fTqFEjxo4dW2RdFeSElyQFOeElTWFOeElRlBNeUhTmhJcUpWUlujonvMQ1FOCElzSFOeElRVFOeEmhzgkvaYpywkuKwpzwkqIoJ7ykKMwJLykKc8JLktLghIcHfNpsUxYO1T9peV+CEnHC8zran5PVq1eTmpr6USEsJamvKAQnPBfBCc9FcMJzEZzwXAQnPBfBCc9FcMJzEZzwXEqDEx4W8PSTlmfpUO2Tlvcl+PJnq4CAgICAgICAgMD/GJ89O8rz588/9yGUjB8/Xu3va9as4dy5cyq/b9u2rUT1CQgICAgICAj8LyKkKFSlRFIUfmnGjRvHuHHjvrQMAQEBAQEBAYH/SUpLWGNpQrgtERAQEBAQEBAQEChh/idmwgUEBAQEBAQEBL4cQjiKKoITLiAgICAgICAg8FkRwlFUEZzwUoRGdtaXloCJLPpLSwCgmc2X75oVU0O+tAQAksTlv7QEdDLTvrQEADKPXPjSEtDKLB1p+RLqfNxbGz8Hmn6f9uUb/5SsIt5OWBIkNSv+m38/J5nSzC8tgTTDLz9+A2RlfPkUheVq//vX0H8SfK5+aQUCaigdZ4qAgICAgICAgMB/lmwNYSb8QwQnXEBAQEBAQEBA4LOSnS044R8iRMkLCAgICAgICAgIlDDCTLiAgICAgICAgMBnJVuY91VBcMIFBAQEBAQEBAQ+K0J2FFWE2xIBAQEBAQEBAQGBEkaYCf9/QGJSMgvXbcPvwSOMDQ0ZPbAn7Zo3VrG78/Ap2w958iLkJYb6Eo5s+CPf9ofPAli5fR+hEa8wrVCOn0cNpk61KsXXsHYrtx48xNjQkO8G9qJdiyYqdncfPlFoCA7FUF+fwxv/VNGwatteQiOiMK1Ynp9GDaZONcdi10VSUiJrVizl/t07GBkZMXDoSFxatVaxy87OZtf2zZw/cwqANu07MXjYSDQ+WJ3t432WlX8sYuyEn2nboXOxNLxLSmbB+h34PXiMiaEBowf0oH1z1fRkezz/5vTFq0THxmFsZIh7+1YMdOug3P7q9Rt+X7uNxwEhVCxXhp9HDMCpdvViaUhMSuLPlau5c/cexkZGDB86GNeWLip29x/4s/evAwQEBWFoYMDu7Vvybd+xew/Xrt8kLDyc/n17M3hA/2IdP6+OpavXc/ueP8ZGhowY3J82Ls1V7O75P2LXgcMEBAVjYGDA/i3r1JZ3/9Fjfpz+KwN7u/PtwH4fpeW05194HdlNWpoM5yauDBszBR0dXbW2jx7cYseGZcTFRmPnWIPvJs6ifIXK+WySk94x6fs+VDazZM7iTcXWcfb4Xk557ESeJqNB49YMGv1LgTqe+PuxZ9Mi3sZGY1ulJsPHz6Vcjo7kpHfs3riQJw/80NCAmnUbM+i7XxBLDAo8ttWYAZgPdsewZhWiDpzA/9tfCrS1mTgE20kj0ZKIiT56hkdj55AlTwdAbGVGnS0LMXGqjTTsFY8mziPuwvVi18F7Lp7chffxrcjlMuo4t6X3t7PRVlMXGRnp7F41hbDgx8S/iWLsrG041HDKZxMe8gSPnYuJCHmCrkhMW7eRuHQaVOCxS8uYpWNiTI1V8yjbsgnpbxMI+G0Fr46cVLHTNjKk6sJfKNe6meL/3bafoCWK80RkVpmm147ntzeQ8GzWEl6u21m0hq+MqbX+d8q1bkp6XDzPZy8n6uAJVQ3GhlRfOoPy7RTncNjmvwiYv0a53cS5LtWX/oKBox2poRE8/mEu8dfvFrsutE2MqLH8N8q2bIw8LoHABSuIPnpKbV04/j4tty62HyB42fu6qETjyx/Uhb6EF3OW8nJDMeqiFLQHgJahIVaTf8GogRMZ794RuWUD8d7nVOw0dHSwGPcDJs1aoKGtTfIjf8KWLyX9zRsAdCtWwvKHSejXqEF2ejrxvhcJX7MSsr58qsoPEWbCVflPzoRHRERw4MCBLy3jk/HH5t1oa2vjtXUVc374jmWbdhEcFqliJxbp0cW1OWMH9VHZlpiUzJSFK+jv1pEzu9YxoFsnpi5cQWJySjE17EJHW4vj29Yw+8fR/LFpJ8FhESp2IpEenV1bMGZwX7Uapi74k37dOvH37g3079aJqQuWF1sDwKZ1K9HW1mHHviP8OGUGG9euIOylaj7vs6dPcPP6FZav3cyKtZu5dfM6Z0555bNJTkri8IG9WFpZF/v4AH9s2YuOtjYntyzn14mjWLp5D8Hhqu1Bdjazx4/gzM7VLJ/xI0dOe3Puyk3l5tkrNlLFxpK/t69kdP/uzFi2jvh3ScXSsGbdBnS0tTm4dxfTJv/MqrXrCX0ZpmInEolo364NI4cPVVuOaeXKjBg+FOeGDYp13A9ZuWEr2traHN21mRk/T2DF+s2EhIWr0aFHxzat+G5owU5TRkYGazZvp1oVh4/W4X/3BscP72L672tYtfUYr2MiObJvs1rbpMQEViycRq8Bo9i47yy29tVYvWSmit1fO9diam79UToe3bvGqaM7mDx3PUs3nSA2JpJjf20oQEc8axdPonu/71m92wdru+ps+GOacrvHvnWkJieyZONxFq335F3CWzz3F34zkBb1msAF64jYcaRQu3Jtm2E3eRQ32w/lgl0rJDbmOMyZoNxed88fvLv/hLMVnXk+ezn1D6xCt9xXH1ET8PTBVc4f38KYmVuZs/oscTERnD60tkB7m6r1GDRuEUYm5VS2JSfGs3HhaJq06cWCLVeZueI0jnVUHeq8lJYxq9qSmWTJ07lYzQX/76ZSbdks9B3tVOyqzp+KlljEpbrtuNG2L6a9u2LavxsAsshXeFs1VP5da96N7MxMYrxUnTZ11Fg+myx5Ot7Wzbg/bDI1Vs7BoJq9il31Jb+gJRHhU60111r0xrTfN5gPcgcUjnyDw+sJXr6Vs5UbErx8Cw0Or0fbxKj4dbFoJlnp6fjWcOHRmKlUXay+LqrMm4KWWMTlBu252aEflXt1xbTv+7qIxsfWSfl3vWV3RV2cLF5dlIb2ALCc+DPZGRn4u3clZP5crH6YhMjaRsWuQo9e6NeowZMRg/Hv6UZmchIW43/KLeeHSaQnxOPfw40nI4ZiWOdrynfrXmwdJUk2Gp/077/Af84Jz8jIIDIy8j/jhEtlaVy8eZuR/dyRiEXUqVaFZg2+5oyvauL96g62dGjZFNOKqi93efg8kDImxrg2cUJLS5P2Lk0wMTLE98btYmnwvXGLEf175GhwpFnDugVosCtEQwBlvjLJo6EpJkaGXCqGBgCZTMr1q5fpP2gYYrGY6jVq0dC5MRcvqA58F7zP4Obem3LlylO2XHnc3Htx4fyZfDa7d2yh8zfuGBoZF+v4oKgLn5t3GNW3W05dONC8QR3+9lWdJRzYrSOOtlZoa2lhZVaJ5g3r4v88EICwqGieB4cxoo8bIj1dWjVqgJ2lOT437hRDg4wr164zZNAAxGIxNWtUp7GzE94XfFRsqzpWoY1rKypXqqS2rHZtWuPUoD5isbjYdZBXx6XrNxg+oC9isZha1avRxKkB53x8VWyrVXGgXSsXTCtVLLC8g8e8aPB1HSzNTT9ay6ULp2jZ9hvMLW3RNzCiW5/hXPJWnd0CuHXtIuaWtjg3a42urh7u/UYQFhpIVESo0ubFU38iXgbj0qbLR+m46nOC5m3cMLO0Q9/AiK69R3DVR3XGEeDODR9MLexo2LQtOrp6uPX9jvDQAF5FKG4qY2OiqOvcErHEAIm+IfWcWxEZHlTo8aOPnSPmuDfyuIRC7cwHdSN8+2GSnwSSkZBIwPx1mA9WXLj1HawxqluDF3NXkyVLI9rjLEmPXlDJvf1H1cUtX08atXSnsoU9EgNj2ruPxs/3mFpbbW0dWnYahG3Vemhoqr545+LJnVSt3YQGzbqgraOLSKxPJTNVx+k9pWXM0pKIqdi1LYELV5OZkkrCzbvE/u2DaZ9vVGzLt29JyOptZEllyMKjiNh7FPP+7mrLNe3zDfHX7iALjyqWhkrd2hIwbxWZKanEX7/L65MXMOunqqFCx1YEL99CllSGNCySiJ1HMB+s0PBVo7o1klaVAAAgAElEQVSkxcQS7XEGsrKI2u+F/E08ldzaFqsuNCViKnRuS9Ci1WSmSknwu0fsmYtU7tVVtS7atSR07XZlXUTuO4ppP/WOpWmvb4i/Ufy6+NLtAaApEmHSoiVR2zaTJZOS8sifhGtXKNtW9RzTq2RK4i0/MuLjyU6X89bHG3EeZ123cmXiL14gO11ORvxb3vndzLddoHTz2ZxwR0dHVq1ahZubG+3bt+fMmVwH6NKlS3Tr1o2uXbsyZMgQXr58CcDQoUM5f/680s7Hx4dBgxQzZ69fv2bChAn07NmTrl27smFD7uySq6sry5Yto2fPnsyePZt58+YRFBSEm5sbEyZM4PTp04waNUppL5fLadasGVFRBZ8w78t0d3enbdu27NmzR7nN39+fPn360LVrV/r06YO/vz+gmIF3dnZm0aJFdO3ala5du3L7dvEG64IIj4pGS1MLS9NcJ8re2pIQdTOvH0l2NupncFU0vMrRkPu43s7qH2rIVn2DmbrZKXVERUagqaWFmbmF8jcbWzvCXoaqan75Ehub3Iu0jY0dYWG5di+ePyUw4DkdOqleAAojTF17WFkQXMTgm52dzf2nL7AxNwMgOFzxaFs/j/Nrb21BSETRdRoZGYmWlibmZmbK32xtbAgNU50J/5xERCr6hYVZrtNsZ2NNaDHbMy/Rr2M5fd6HIX17/iMtkWHBWNrkzuxZ2TjwLuEtSYnvVHWHB2NpnWsrEompWMmMiLBgALIyM9m5cRlDv5vEx062RIYHY2GdG+JlYe1AYkIcyYmqTnFUWBAW1rmz/noiMRUqmhMZrtDh2rEXD25fISU5kZTkRO5c96ZWvaYfJ6gADGs4kOj/TPk90f85okrl0SljgkF1e6TB4WTmme1N9H+GYXXVmdPCiI4IxNQqN2zD1MqRpHdxpCQVfoOgjpeB/kgMjFkxawAzR7Vg85KxxL95VaB9aRmzJHZWZGdkkBr0Uvlb0qPnGDiqr8u84XIaGhpqZ6tB4fRFHvAslgZ9B2uyMzJJCQxV/pb48DkG1Qt44pQ3ZE8DDPPaffiylQ+3F6bDNqcugnPrIvlxwXWR99zT0NDAoKp6u8q9vyGqmHVRGtoDQM/cAjIzSYvIfWooDQpUOxP+5tQJDGrWQqdsOTT09Cjbph3v/G4ot78+cpAyrq3R0NNDp1w5jJ0bkeh3U6Wc0oAwE67KZ50J19TUxNPTk/Xr1zN79mzi4uKIi4tjypQpLFu2DC8vL7p06cKkSZMA6N69O8eO5c6UHD16lB49egAwdepUBg0axOHDhzly5AiXLl3i6tXcWY3k5GQOHz7MggULmD17NnZ2dnh6erJq1Sratm1LQEAA4eGKDn/q1Cnq1KmDqWnhM25xcXEcPXqUv/76iw0bNvDs2TPkcjkTJkzghx9+wMvLi4kTJzJhwgTkcjkACQkJVK1aFS8vL2bOnMlPP/2k3PZPSJXJ0JeI8v1mIBGTKpN9VDk1He158zaec5dvkJGRwSmfK0TGvCYtrWhtUlka+pL8M6UG+mJSpf9EQwLnLl8nIyOD0z6XiYx+jawYGgCkUikSiSTfbxJ9faRSqYqtTCZFoq+fz04mlZKdnU1mZiYb165k1JgJaGp+3CmgqAs17VFEXWw56El2djZdXJvmlCPD4MM6LUY5AFKpDIk4fz3o60vU1sPnRCqTIfngf9CXSEj9BzpWb9rGsAF9/tGMPOS0d55Y6fdx0zKpatiATCpFop8/rlos0UcqTQXgzImD2FWpgY191Y/WkSZNzRezrdQhS1Wr+cP4brG+gVKzlV01MjLSmTDYlQmDXdHU0sK1Q6+P1qQOLX0JGe+Sld8zcsKgtA310TbQJz0xf1hUxrsktAz1+RjSZKmIJYbK74W1SVEkxMXgd+k47kOnMWfNOcpUMGPXqskF2peWMUtLX0JGUv7/NyMxGW0DiYrtmwtXsJn4LVoGEiQ2lpj1746WmvPBpFE9dMuXI+b42Y/QkJzvt4zEJLQNVNsz9txl7H4eiZaBPhJbS8wH90Azpx7jb95HVLkClXt1RkNbG7MB3ZDYWqIlKd45q6UvIeODMJ6MpCS09FV1xPlcxXr8CLT0JYitLTDtV0BdONdDt3xZXnt9TF182fYA0BJLyEzNryMzJRktiaoOWWQ48tevqX3Yk7onzyKytObVrm3K7ckP7iOytqHuybPUPuRJyvNnJFy5VGwtJUl2tsYn/fsv8Fmd8F69FBcMW1tbqlevzv3793nw4AFVq1bF3l5xR9mjRw+ePn1KcnIy7dq14/bt28THxxMfH4+fnx/t2rUjNTUVPz8/fv/9d9zc3OjVqxevX78mKCj30Wy3bt0K1KGtrU2fPn3Yv38/APv27WPAgAFF6u/ZUzErV65cOVq2bImfnx8hISHo6OjQuLFiYWSTJk3Q0dEhJETxCFlHR4dvvlE82nJ2dkYkEhEcHPyxVadEIhKRkpr/wpEilSIRiQrYQz3GhgYsmjaR/V5n6PLtRG7ee0iD2tUpX7boOE+xSI+U1PyOVUqqDIn4YzUYsvCXHzhw/G+6Dh/PjXsPaVC7BhWKoQFALBaTmprfmUlNTVXruIlEYlLzDHKpqamIxGI0NDQ4fdITaxtbHKsWbxFkPg0iPTXtUXhdHDrtzWnf6/wxfSK6Ojo55YhI+cBZTZFKi1WnYrGIVGnx6uFzIhaJSP2gX6SmSpF8pI5rfreRSqW4Ni/+LO/Vi38zvHcrhvduxeJff0AkEiPN49xJc9peJFa9wIvEYuV2pb00FbFYQnxcLGe8DtJ70Ohi6bjue4rv+zXj+37N+HPeePTEEqTSXIdH9l6HSPXiKhKJVRxSaWqyUvP6pVOpZGrJun2XWbv3EhUqmrNphWrs+j8hMyUVbaPcG4D3nzOSUshITkHbMP/NgbaRAZlJhTvPt6+cYMqQhkwZ0pANC0ejJ5Igy1sX0oLbpCh0dPWo3bA1lna10NHVo0OPMYS8uI80Vf0aitIyZmWmpKL9wc2LlqE+GcmqN2XPpi0kU5pGc7/T1N2zmldHTyOLilaxM+vrRsyJc2SmqJZRsIYP2tPQQMUhBngyaT6Z0jRaPvyb+gfX8urQSWSRCg3pbxO403ssNhOG0jr0CuXbNufNhevK7cXS8YHjr21gQGaKqo5nMxaQJZPR9MYpvt65mmiPU8hexajYmfZx4/WJc2SmFu/GvzS0B0CmNBUtSX4dmhJ9MlNVy7Cc+DMaOjrc/6YD9zq2If6yLw6Lc5IuaGhgv/hPEi75cq9jG+67dUTb0BCz78YUW4vAl6VUZUcRi8W0bt2aEycUMZStW7dGIpGQnJyMhoYGhw8fRifHifmQD2dIP6R37950794dV1dXEhMTlU50acfCtBKZWZmER0VjkRMCERgajo2FWRF7qlK3RlW2LpkDQEZmJr3HTKZf1w5F7AUWppXVaAj7xxq2LJ2bq+H7n+n7TdEaAEzNzMnKzCQqMgJTM3MAQoOD1C6stLCyIjQkiCqO1RR2IUFYWirs/O/f4/GjB9y5rXhkl5yUREhQICHBgYwaM7FQDZbv2+NVDBaVFfHNAaHh2Fqof6ri5X2Z3R6nWf/bVCqULaP83dbClKiYWFKkUmVISmBoOG2bqWZZ+RAzMzMyM7OIjIzCLCcUJDgkFGtLyyL3/ZSYmyn6RUTUK8xzHvsHhoZibWn+UeXcffCQ54HBuA8eAUBKaiqampoEh4Yxf+ZUtfs0bdmBpi1z+82aZbMJCwmgUbM2AISFBGBsUkZtvL+5hS2XLuTGi8tkUl6/isDc0paggCckxMcxZawiM4tcnoZcnsaYwZ1Ys90LTa388cqNXTrR2KWT8vvGP6cTHhKAU9N2AISHvsDIpCwGRiYqOkwt7biWJ148TSYlNjoCMwtb5b4DR01DT6ToHy079GDh9G8LqsaPIulxAEa1HXl1+DQARrWrIouOJf1tAslPApHYWqBloK8MSTGsXZWo/epj29/ToFkXGjTLjaHftWoKUS+fU7exop0iXz7H0Lgs+oaqdVEUppZV8ocGfRgW8QGlZcxKDXqJhrY2EltLUoMV4WKGNR1Jzlkbkpf0hHc8HJ3b3x1mTuTd3Uf5bDRFelR0a8/9wYWPU3lJCQhFQ1sLiZ2VMgzDsJYjyU8CVDXEv+PB8NwnDFXm/si72w+V399eucW15orJNQ0tLVo+OUfIqu3F0xGcUxc2lqSGKOrCoIb6ushISOTRmNxFyvbTJ5J472E+G02RHhW6tuPBsOLXRWloD0ARhqKlhZ6ZOWmRitAmib09slDVJAMSewcit24kM0lxwxl79DBmw0eilTO26VWqxOtjR8hOTyczPZ03p09i9u0oIjeqz0D1JfmSISQhISFMmzaNhIQETExMWLx4MdbW1vlsMjMz+f3337l8+TIaGhqMGjVKOZlc2LZ/w2edCT9yRLFCPzQ0lCdPnvD111/z9ddf8+zZM+UstoeHB9WrV8fAQHGn3r17dzw8PPDw8MDdXbEIwsDAgPr167NpU25mgFevXhEbG6v2uAYGBiQn53/8VqZMGZo0acJPP/1E//79VVLVqcPDwwOAt2/f4uvri7OzMzY2NqSnp3PjhiIm6/p1xWNKGxtFLFd6ejpeXoosHLdv30Ymk2Fra1u8ClODWKSHi3N9tuz3QCpLw/9ZAJdv3aO9i+qsYVZWFmlyORmZmWRnQ5pcTnp6hnL7i+CXZGRkkJIqZc3O/VQoWwbnurWKqaEBW/YfVWh4+oIrt+4WQ0O2Gg2hSg1rd/xFxbJlca5bu1h1IRKJadSkOX/t2Y5MJuXp40f43bhGS1fVhUGtXNtx3OMwcW9ieRv3Bs+jB3Fto1j0MuGnqazZsIPlqzezfPVm7Byq0Kf/YAYMKdrBEYv0aOlUj837jyGVpfHgWQCXb9+ng4vqTd2ZSzfY8NdRVs3+CbMPFn1ZmlbCwdqSrQePkyZP5+LNuwS+jKBVo/rF0CCiaZPG7NyzF6lMxuMnT7h24yatXVup2GZlZSHP0x5yuZz09HTl9oyMDORyeU6YjsI2M7N4qa3EIhHNGzuzfe8BpDIZD58849rNW7RtpZoqMa8OPtAxfEBfdm9YyZaVS9mycilNnBrQpV0bpk4s/mxO81YduXjOi4iwEFKSkzh2cDstWqtPOdmgsQsRYcH4XbuAXJ6Gx/6tWFjbY2puTZ36jVmxxYMFK3ezYOVuevYfhbVtFRas3K3igKujScsuXPb2JDI8mNSUJLwObaVpK/WLO+s5tyIyLJDb171Jl6dx/OBmzK0dqGyuGEts7Ktz+fwx5Gky5GkyfM8exdyq8PhbDS0tNPV00dDSzPNZVXfkHk/Mh/XEoJod2saG2E//nohdivEuJSCUxAdPqTJrLJp6ulR0a4NRLUeij55RKacwGrb4hhs+R4mOCCI1JZFzHhtxcin4iWVGupx0eRoAmRnppMvTyM6Jx3Zq2Z2Hty4QEfqMzIx0zh7ZgK1jvXzhLnkpLWNWZqqUmBPnsJ82Hi2JGBOnulTo6ErUgeMqtmJrC3S+MgZNTcq1bob54F4E/ZE/s07Fzm3ISEjk7eXix/xmpkqJ9jxHlVkT0JKI+apRXSp2aU3kX6oaJDYW6JQxAU1NyrdrjuWw3gQuXq/cblSnGhra2mgb6lN14RSkEdG8OX+lWDqyUqW8PnUeu6nj0JSIMW5Yl/IdWvHqkJeKrdgqty7KujbDbGBPgpdvzGdToVNrMhISib/i91F18aXbAyBLJiPhsi+mw0agKRKhX7MWJk2aE3dO9RxLefaUsu06oqmvD1palO/mjjw2lszEd2QmviMtKpLy33QHTS209A0o274j0mDVm4rSwJeMCZ8zZw79+/fnzJkz9O/fn9mzZ6vYeHl5ERYWxtmzZzlw4ACrV68mIiKiyG3/Bo3sbDWrTj4Bjo6OjBs3Dm9vb6RSKT/99BPt2yucoEuXLrF8+XIyMjIoU6YM8+bNw8rKSrlvu3aKWaSzZ3NjrGJjY1m4cCEBAYq7d319febPn4+dnR2urq5s2LCBKlUUC6IyMjIYO3YskZGR2NrasmrVKgDu3LnDiBEjuHTpEoaG6gfv97i6utK5c2euXr1KUlISQ4YMYeDAgYBiYeb8+fNJTU1FIpEwY8YMateuTUREBD169MDd3Z0rVxQD05w5c2jQoHjp3948Up+HNzEpmQVrt3LL/zHGhgaMHtiLds0bc//JcybN/5PzexWD091HTxk/Z3G+fevWcGTNPEWu4Dl/ruf6PcUiUueva/HTiIF8ZZw/vVS2hvr7MkXO3S3cevAII0MDRg/sTbsWTXjw5DmTfl/GuZx0cHcfPWXC7IX59v26RlXW/DY9R8M6btx9oNTw44jBfKUmxdUbkfrZ1KSkRFYvX8qDe3cwNDJiUE6e8MeP/Plt9jT25+Sczc7OZue2TfnyhA8ZPkrtzdeMqT/SslUblTzhFVNVZyUgJ0/4uu34+T/B2NCA73PyhN9/8oKfFqzgwh7FDIT7mKm8jotHVyf3gVP75o2Y+t1gQJEn/Lc123gcGEylcmX4ecRAtXnCk8SqWRsSk5L4Y8Uq7t67j5GRId8OHYJrSxcePnrMjDlzOX7kIAAP/B8y+ZcZ+fatXasmyxYtAGDpnys4530h3/ZJP0ykXdv8udd1MtPU1kViUhJLVq3nzn1/jAwNGDlkAG1cmuP/+ClT587n9EHFgub7Dx/z44xf8+1bp2Z1ViyYq1LmohVrKF+urNo84VFYqPz2nlPH9uF1ZDdyeRpOTVoxfMxUZX7uKWP74dZriHL2/NF9P3Zs/IM3sdHYV6muyBNeUfVphq/3CS6ePZ4vT3hapvqnce8547mH0x47kcvTqN/YlcGjpyt1zJzQi849hilnzx8/uMnezYuJi43G1qEm3074lXIVFDpiYyLZt2Upgc/8gWxsHGowYMQUKpoqnngk1FG9YXOYNY4qs8fn++3FvNWE7ziCi/9JfGt3RhauWNBo88NQ7CaNRFMsItrjDI/GfJAnfOtCTJzqKPKET5irNk+4pt8jld/y4nNyJ97Ht5IuT6OOU1t6j8jNE75okhttuo1Uzp7PHdeO+Df5FzjPWnWGshUUs9dXzu7nnMcm5HIZto516Tl8Jl+VUzyBaaCrmqu6pMesuy2Gq60DHRNjaqz+jbIujUmPf0fAvOW8OnISk0b1qH9gI95WDQGo6NaeqgumoWNkSErQS17M/ZM4n/zZXOof2sS7uw8JXLi6oConU6p6E63zlTG1NsynnKsiN/bzWX8SdfAEXzWpT8NjmzhbQdGXKrl3oPrS6egYG5ISGMqzmX/kc7K/3vEH5du3ABTx409+/h157FvV4xmqf8iubWJEjRWKupC/fUfg/OVEHz2FiXM96v61AR9bRW74it+0x/G3qWgbGZIa/JKA3/4k7uK1fGXV3b+RxHsPCVq8Rt2hAMjKUHVvSro9ytVW/+RHy9AQ6ynTMazfkMzEd0RsVuQJN6hVB/vFy7jfSTG5pGVkhMX4HzGq3xANHW1kIcGEr1tN6rOnAIjtHLAYNwGxnT1kZZF47w7hq5aTER+fX6uPamagkuZRYPFCl4pLTXv1Wb8+JC4ujvbt23Pz5k20tLTIzMzE2dmZs2fPUqZM7hPqUaNG4e7uTocOiuvEvHnzMDU1ZcSIEYVu+zd8Vif87t276KtZdPGlWLduHbGxscyZM6dI2w8d++Lw3gm/efOfrUwuyAkvSQpywkuagpzwkqQgJ7ykUeeElzQFOeElTWFOeElRlBNeUqhzwkuaopzwkkKdE17SFOSElzTqnPCSpiAnvKRR54SXNAU54SVNaXDCHwaqxvX/G6wqiElMTFT53cjICCOj3BvlR48eMXXqVE6ezA1D7NSpE0uXLqVGjRrK37p27cr8+fOpXVvxpGvz5s3ExMQwc+bMQrf9G0rHmVICdO7cGS0tLbZu3fqlpQgICAgICAgI/E/xqTOa7Ny5kzVrVJ+EjBs3jvHjx6vZo/Tx2Zzw58+ff66i/xF574Dec+jQoXz5v9+zaNEiLly4oPJ7UZibm//jWXABAQEBAQEBAYHiMWTIELp3V32JU95ZcIDKlSsTExNDZmamMhzl9evXVK5cWcUuKipKOdv96tUrZSrrwrb9G/5nZsLV0atXr0+yulVAQEBAQEBAQKBgsj5xdpQPw04KomzZslSrVo0TJ07g5ubGiRMnqFatWr54cIAOHTpw6NAh2rVrR0JCAufPn2fv3r1Fbvs3/E874QICAgICAgICAp+fL5mi8Ndff2XatGmsW7cOIyMjFi9WJLEYOXIkEyZMoFatWri5ufHgwQNlcpCxY8diYaFYh1TYtn/DZ1uYKfDxCAszcxEWZuYiLMzMRViYmYuwMDMXYWFmLsLCzFyEhZm5lIaFmfcC3nzS8uo6lPuk5X0JSseZIiAgICAgICAg8J/lv/Kq+U+J4IQLCAgICAgICAh8Vr5kOEppRXDCSxHn3hX9yvLPjeVXKV9aAgCSLNmXloCvVPUtmF8CvfSsLy0BsU5G0UYlgEg7vWijz4w0o3SEo5SGUJAsp5pfWgIA3TtsKtroMzPt3IMvLQGAJGnRb3b93FQy+vLjN0B61pevi7C0L68B4MsHrwmoQ3DCBQQEBAQEBAQEPitCOIoqghMuICAgICAgICDwWRHCUVQpHakwBAQEBAQEBAQEBP6HEGbCBQQEBAQEBAQEPitCOIoqghMuICAgICAgICDwWfnyKQZKH0I4ioCAgICAgICAgEAJI8yE/z/h+tkdXDm1hXS5lOoN2tNl0K9o6+iq2IUH3cfHYxVRLx+jqaGJdVUnOvafgaFJBQB8jq3m8smNaGnn7vv9XE/KVCjemwjPHt/LKY+dyNNkNGjcmkGjf0FHjQ6AJ/5+7Nm0iLex0dhWqcnw8XMpV6EyAMlJ79i9cSFPHvihoQE16zZm0He/IJYYFKnh5LH9HD+8F3maDOemrfh27KQCNTy8f5vtG/7gTWwM9lWq8/2PMylfoRIAu7eu4c6NyyQkxFGmbHm69RpMi9Ydi1UPAJdP78T35BbS02TUdGpH96Fz1LZJWOADzh5eRWToYzQ1tbCt2pCug2dgZKJ4E2Z2djZ/H/iTW76HAWjo0pMOfX5CQ6PoR3cXT+3iwvGtyOUy6ji1pde3s9VqyMhIZ/fqKYQHPyb+TRRjZ23DvrqTcvvGRaMJfnZH+T0zI50KpjZMWeJRrLo477Wbs547kKfJqNeoDf1GzVDbJhnp6Wxd+Qsvgx7zNvYVP/66GceaDZXbz3ru4MZFL+JiX2FgZIJL+960cxtaLA1nju/j5NGdyNPSaNjElcGjpxXcNx/4sWvTEmXfHDFhjrJvAjx+cJODO1fzKvIl+gZG9Bv2A07N2hZLx4UTuzl7bBvpchlfN2pL35EzC6yL7SunEhb8hLexUUz8dStVajTMV87F0/tISUpATyShXpP2dB/0E1paRQ/bF0/uwvt9v3BuS+/C+sWqKYTl6RcONZzy2YSHPMFj52IiQp6gKxLT1m0kLp0GFXp8qzEDMB/sjmHNKkQdOIH/t78UaGszcQi2k0aiJRETffQMj8bOIUuuSEUptjKjzpaFmDjVRhr2ikcT5xF34ePeLNzbzYwBPSwR6Wly8Wosy9YFkF7AmxRdm5VneH8rKpTVI+ZNGpt2h3D5RpyK3Yrfa9Ogzle4uPmSWYzpPd9TO/HJaY/aTu3oWWB7yNmb5zz9ftb2fOdpRrqcYzsX8vCWN5mZ6dg41qXnt3MwLlOxWHVRGq4jpWGsALhwYhfnPXPOU+e29B45S72OjHR2rpxKWPBj3sZGMWHONhzynKd57RZN7kGaNIXfNngXW0dpuI6UFEI4iir/qZnwiIgIDhw4UGLHu3nzJleuXPnsxwl8dJkrpzYzZPJ2flx6gfjYcHyOrVZrK0tJpL5Lb35Y4s0PSy+gK9Ln2Lbp+WxqNOzIjPV3lX/FdcAf3bvGqaM7mDx3PUs3nSA2JpJjf21Qa5uUGM/axZPo3u97Vu/2wdquOhv+mKbc7rFvHanJiSzZeJxF6z15l/AWz/1F5/p9cOcmxw/vYeb8lazefoSY6CgO7d2q1jbxXQJ/LphO74Ej2fLXaWwdqrJy8SzldpFIxOTZS9h24Czf/ziTnZtW8vzpw2LVxQv/K/ie2MLIaduYuuI8b19HcO7oGrW20pR3OLXqxdTl55m6/Dy6Yn0Ob5qh3O7nc5DHd7yZON+DifOP8fSeDzcvFN2Pnz24irfnFr6fsZXZq84S9zqC04fXFmhv61iPgWMXYWii+qrf76ZtYPGOW8o/6ypfU8e5XTFqAh7fv8aZY9v5Yc5G5q8/TWxMBCcOrC/Q3r7q1wyfsAAjNTqys7MZOv53/tx5ifEz1nHx9AFuXfm7SA0P713n5JGdTJ23jj82H+d1dCQef21Ua5uUmMDqxVNw7z+aNXu8sbavxrpluedIZHgwG/6cRY8B37N+nw+/Ld+LtV21YtQEPLl/lbPHtjJhzmZ+W3eGuJgITh5YV6C9XbW6DBmvvi5qNWjJtCUH+GPXdWb8cZTI0OdcPLWvSA1PH1zl/PEtjJm5lTmrzxIXE8HpQwX3C5uq9Rg0bpFaDcmJ8WxcOJombXqxYMtVZq44jWOdJkVqSIt6TeCCdUTsOFKoXbm2zbCbPIqb7Ydywa4VEhtzHOZMUG6vu+cP3t1/wtmKzjyfvZz6B1ahW+6rIo//Hqe6XzGwhyU/zHxAz+E3Ma0k5tsB1uq1lNFl1k9VWbM1mHZ9rrJuezBzJlXDxDh/Xvi2LhXQ1iq+M/HswRUueG5l9IxtzFx1jrevI/j7sPqxAsDGsR79CzhPL53eTWjAfSYtPsqcdRcR6xvjsWNBsXSUhutIaRgrAJ7ev8p5z62Mn72FuWvP8OZ1BKcOFjJ2Vq3L4PEL1ep4j/fx7RgYFb9vQum4jpQk2Wh80r//Av8ZJzwjIw8Yw9sAACAASURBVIPIyMhP6oRnZBT+ghI/Pz+uXr36yY5XEPevHqNu8x5UMHNArG+MS9cx3L+qfobSoXYLajTsgEhsgK6eGKfWAwgPuPtJdFz1OUHzNm6YWdqhb2BE194juOpzQq3tnRs+mFrY0bBpW3R09XDr+x3hoQG8iggBIDYmirrOLRFLDJDoG1LPuRWR4UFFavC9cJqWbbtgYWWLgYER7n2H4nv+lFpbv+u+mFva0KiZK7q6evTs/y0vQwKJDH8JQK8BIzCzsEJTUxMHxxpUrVGbgKfFewHKnSueNHBxp6K5AxJ9Y1p3G82dy+rbxLFOC2o757ZJk7YDCM3TJncue9K841CMy1TCuExFmnccxp3Lx4rUcOuSJ41auVPZwh6JgTHt3Edzy1f9ftraOrh0GoRt1Xpoahb+8oi3sZEEP7tLwxbfFKkB4MbF4zR17YaphT36BkZ07jmK6xePq9eho0PrLgOxr1YXTU3V4ad9t2FY2lZDS0ubSmbW1GnYkqDn94vUcPXCSVq0+UbZN916f8uVCwX0zesXMLOwxalpG3R19ejedxThoQFERYQC4HVwGy3bdad2/aZoaWljYGRChcrmxaqLmxeP09i1O6YW9kgMjOjQcxQ3LnoWWBeunQdhX62e2rooX8kCib4RANlko6GpSWx0WJEabvl60qhlbr9o7z4av0L6RcucfqGhpl9cPLmTqrWb0KBZF7R1dBGJ9alkZlekhuhj54g57o08LqFQO/NB3QjffpjkJ4FkJCQSMH8d5oO7A6DvYI1R3Rq8mLuaLFka0R5nSXr0gkru7Ys8/ns6tq7IiXPRhISlkpSSwY79L+nYupJa2wrl9EhOyeDGnbcAXL/9FqksE7NKYqWNvkSL4f2sWL8juNgabl/yxLmVO5Vy2qON+2huF9geurToNBjbqvXVnqdvYyNxrN0UQ5Ny6Ojq8XWjDkRHBBZLR2m4jpSGsQLgpm/+sbNDj++4WdB5qq1Dq86DsKuq/jwFePM6gluXT9C224hiHf89peE6IvBl+eROuKOjI6tWrcLNzY327dtz5swZ5bZLly7RrVs3unbtypAhQ3j5UuEMDR06lPPnzyvtfHx8GDRI8bjz9evXTJgwgZ49e9K1a1c2bMideXV1dWXZsmX07NmT2bNnM2/ePIKCgnBzc2PChAmcPn2aUaNGKe3lcjnNmjUjKiqqQP0flhkbG8ugQYNwd3enc+fOLFmyBIDnz5+zf/9+jh07hpubG5s2KWZxfX196du3L+7u7vTp04f794s3KBRGbGQglSyqKr9XtKhKSuIbUpPji9z35fPblDdzyPfbiwc+LBrvzNqZXbjl81exdUSGB2NhXUX53cLagcSEOJITVS+0UWFBWFjnHldPJKZCRXMiwxUXL9eOvXhw+wopyYmkJCdy57o3teo1LVJDxMsQrGzsld+tbOx5l/CWpMR3RdqKRGIqVjIjIkz1AipPSyMo4BnmVjZFagCIiQiksmVum1S2rEryuzhSkgp3OgBCnt2molmurpjIQCpbOuYpy5GYyKIvrNERgZha5e5naulIUjE1FMatS8exrVqPMuXNimUfFR6MuXWuDnPrKop+8S91ZGdnE/j0LqbmRTt9keHBWNjk9jcLmyokJrxV2zcVtrn9WE8kpkIlMyJz+kXQC8XTkJkT+jJxWAc2Lp9FcpJq/1LHq4ggzPO0ibmVok3+aV3cunySnwc3ZurwFkSGvqBZ215F7qPSL6z+eb94GeiPxMCYFbMGMHNUCzYvGUv8m1cfXU5BGNZwINH/mfJ7ov9zRJXKo1PGBIPq9kiDw8lMTsmz/RmG1e3VFaUWG0t9AkOSld8DQ5Mp+5UuRoaqIT3PApMIjUilqVNZNDWheaOypKdnExSau/93g23wOB1FXLy82BqiIwKp/InOU+eW7oS+uMe7t6+Rp0m5e/UEVes0K9a+peE6UhrGClCcp2Z5dJj9i3ME4PC2hXTtNxFdXdFH7VcariMlSXa2xif9+y/wWWLCNTU18fT0JDg4mH79+tGgQQMApkyZwp49e7C3t+fQoUNMmjSJQ4cO0b17d44dO0abNm0AOHr0KD169ABg6tSpjBkzhoYNGyKXyxk6dCi1atWiaVOFw5acnMzhw4oYqJs3b7J48WKOHj0KKGaylyxZQnh4OBYWFpw6dYo6depgampaqP68ZaalpbFhwwb09fVJT0/n22+/5dKlS7Ro0YK+ffuSmprK1KlTAQgLC2PdunVs3boVAwMDAgICGDlyJBcvXvxX9SlPS0VPbKj8LhIr4qbTZClIDAp+/BUd/hxfr3X0G5/7mK1Gw47Ud+mNgXE5IoIfcHDtRERiQ2o16lKkjjRpar6Y7fefZbJUDIxM8tnKZFIMP/hNrG+ATKq4oFrZVSMjI50Jg10BqFbbCdcORTsYMlkqEv1cDe8/S6WpGBoZq2gwMs6vQaJvgFSaqlLulrVLsLKxp0495yI1gKJNRHnqIm+b6BuaFLQbr8Ke431sHYN/zH3kKJelIpLkaV+JAXJZKtnZ2YXG86XJUhHl6Rfv26MoDUVx+/Jx2nb/rtj2abIC+oU0BYN/oePEwfVkZWfT2NWtSFtZAX1TKlXTN6VSDD/oF2JJbt98G/eaaxdPM/nX1ZiUKc/mlb+yZ/NSRv/0e5E60mT5+4WyTf5hXTRs3pmGzTvz+tVLbvp6YWhctlgaxBLVfiGTfny/SIiLITzkKWNmbKKyRRWO7/uDXasmM3Heno/7RwpAS19CxrtcJzfjXRIA2ob6aBvok56YlM8+410SembFi38GEIu0SEnNfaKZnJIJgESsRWJS/iedWVnw94UY5kyqhq6uJhkZWcxa9ARZmiLo29HegFrVjFm5KZDy5fSKrUEukyIWq+kT/+A8LVfZCpOylZk3thWamlpUsnDAfdiMonekdFxHSsNYAYoxtyAdH9smD/y8ycrKpI5TawIe3/qofUvDdaQk+a+EkHxKPosT3quXwpmytbWlevXq3L9/Hw0NDapWrYq9veLOrUePHsydO5fk5GTatWvHwoULiY9X3JH7+fmxePFiUlNT8fPz4+3bt8qyU1JSCAoKUjrh3bp1K/if09amT58+7N+/n8mTJ7Nv3z5++OGHIvXnLTMzM5MlS5Zw7949srOzefPmDc+ePaNFixYq+12+fJmwsDAGDBig/C0jI4M3b95QrlzBsWQf4n/dC69dcwCwcqiPrp6ENGnuhSpNpvisJ9IvsIy4mJfsXT6Sjv2mY1WlgfL3CnnunC3t6+HcZhBP7pxRO3he9z3Frg2KeEOHanXRE0uQ5tEhS1U4LSKRRGVfkUisdGreI01NRiRWaF6/dCoW1g5M+OVPsrOzObhjBZtWzGTM5MX59rnic4bNa5cCULVGHUQiCdLUlDxlKj6Lxeo15LV9b/+h7Z5tawh/GcKshasLHKzuXfXCY/uvAFg7qrbJ+/+1sDZ5E/OS7cu+o+vA6dg45raJrki1LF2RREXLnSsnOLhlLgC2VeujJ5Ig+0gNRRH87C6JCW8KjQe/eekk+zYpHFL7qvXQE+XvF9IcHe/b+p/gc3o/N3xPMOm37WoXS13zPc3O9QsBqFL9a0RiibI/AshSFXrU9guxOJ+twj5FqVdXV4/mrbtSycwKgK49h7Fkzli1Ov0un+SvjfMAsK9WL6dN8vTP923yL+oCoEJlKypb2HFgy3xGTV6eb9vtKyc4uLnofvFP2kNHV4/aDVtjaVcLgA49xjBjZDOkqUn5HP1/SmZKKtpGuU7I+88ZSSlkJKegbZh/oba2kQGZSfnbLi9tXSoweaziKYf/k3dIZZnoS3Ivc/oSRYhHqjRTZd8GdUwYM9SW8dPv8yIoGUd7QxbNrMGkXx8SFJrCz987sHJzYJELMe9cOcHhLb8CivbQ/WAs/Dfn6dFtv5ORLue3zVfR1ZPg47WVzYtGM/H3/Sq2peE6UhrGCvg/9s47LIrra8AvLMg2sIvSQbCgYseKvfcSNSZRY9QYjSU/Y9Ro1Ghii9HYa+yaaCzYe++9YBekgyBYqLtL2++PxYVlFlgTRZJv3ufhediZM3fOzj33ztkz556Ba+f2s3WVbpyWr1yLIlK5fo6Avz9GNOpk9myez1ff577uIzuF4T4iUrgoFNVRZDIZLVu2ZP9+XQ5ny5YtkcvlJCYmYmZmxo4dO7C0tDR6rFwuvMlmp3fv3nTv3p0WLVoQHx9PgwYN8tUne5vr1q0jPj6e7du3Y2VlxeTJk9FoNLke6+Pjo09Z+bt4NeiMV4PO+s87Vn5LdNgjqnrrKndEhT1GYVMq1+jF69gINv46kCadh1O9Yd6RATMzM7TGCwXQoGkHGjTtoP+8cv5EwoL88W6kc9DCgp9gU6ykINIIYOdUnovZ8sU1ahUxUeHYO7rpj/3sywlYSXX5ls3a9WTWxEGCdho3b0vj5lk5oIvm/khIUAANfFoCEBIUQNFiJQRRcAAHZ1fOnjik/6xWq4iOisDByU2/bfuW37l9/TJTZy9FLs994qvZqDM1G2X1yZ/LvuNZ6GO86un65FnoI5RFS+YavXgVG8HvswfRoutX1GpsmGtta+/Os9DHOJb30reV/THjG2o37kTtxlk3uU2LxxEZ+piaDdoBEBnyGOs8dDCFa2f34OXdCisjP6zeUK9JR+o16aj/vGbBBMKDn1Cnoa6fwt/Yxd/U48KJ3RzxXcu3P62leEnjUc+GTdvTsGlWJZsV834gNNhfX8EkNNgfm2IljNqmvaMb508d0H/WqFU8jwrHPtMuHJ09MLhv5XET8/bpiLdP1rVYt2A8EcGPqZ15LSKCdX3yT6J8b8hITyc2OkywvU7jTtTJZhcbF40jMiTLLiL+gV3YOVUAE6/F3yHhvj82XhV5tkM3Tm28KqGOiiH15WsSHwQgd3NEolToU1KsvSoRudV4rj/AsTPPOXbmuf7z1LGVcHdVcPJ8DADurkpevEoRRMEBPNyU3Lkfx+MAnSPzyD+BB08SqFujOFHP1VRyt2baOE8A3qQG71rfgMmzH+D3ICtdKec43bz4OyJDH1NDP04f/e3+iAx5RPs+o5Erdcc2bvsph7cvITH+lWBRYGG4jxSGuQKgrk8n6vpk9cn6heOICHlCrYa6Pgn/m2MkJiqUFzGRLJgyANBVlVIlJzJxSDO+nbGFkmUMU/oKw33kQ5KRi6/x/5n3sjBz507divjg4GAePHhAjRo1qFGjBo8ePeLpU93iO19fXzw9PVEqdZGO7t274+vri6+vLz169ABAqVRSu3Ztfb41wLNnz4iJiTF6XqVSSWJiosG2EiVK0LBhQ8aMGcMnn3zy1r8KExISKF26NFZWVkRHR3PiRFbpIaVSSUJC1uPSRo0ace7cOfz9/fXb/Pz83up8xqjesBs3z+3keUQAquR4zu5bTo1G3Y3Kxr+KZsPcz/Fu+Sl1m38s2P/o1glUSXFotVrCA/24cnwTlWq2MEmPhs06ce7EHiLCAklOSmDf9jU0am788WOtes2JCA3g+qUTpKZo2PvXahxcPCjnoMu5dnX35Nzx3aRo1KRo1Jw5ugsHZw+jbWWnSYt2nDq6n/DQIJISE/Ddtp6mrToYlfVu0ISwkECuXDhFSoqGnX+uw8mlPPaOugjn7r82cuH0MX6YsdCoE58XtRp34dqZnURHBKBKiufknpXU9jHeJ3Evo1k96wsatvqE+i2FfVKrcRfOHd5A3Mto4l8959yh9dT2yf0Jzxvq+HThyqldRIU/RZUUz1HfldRtmvtxaakppKbofkCmpaWSmqJBm+3OmZKi5vblI3g3yf/c2anftDMXT+4mMuwpyUnxHNq5mgbNcl/UmZpNj/Qcelw5e4A9fy5m9JQVlLY1bTEkQMPmHTh7XGebSYkJ7Nu+lsYtcrHN+s2JCH3KtYsnSUnRsGfb7zi4eGDn4AJA45adOXdiP8+jwtFo1BzYuYHqdUzLu/Vu2pmLJ315lnktDu9cRf1muTsweV2LCyd2khCnK4/3LOwpR3zXULFq/ulSdZt04XKmXSQnxXPMdyXeJtpFTh28m3Xn7rWThAc/Ij0tlaM7V+BWsVa+UXAziQRzqyKYScyz/S9caBixeQ8OAz9CWbk8FkWtcZ84jPCNuoVpSf7BxN95SIXJX2NuVQTbrq2wqVaRqF1HBO3kxuGT0XRsXQ4XRzlKhYQBvZ04dCLKqOxD/wS8qhTF3VX3Y9zDTUl1z6IEBCeRmJROtwGXGDjqOgNHXee7aboF3IO+ucGDJ/F56lDHpwtXT+0kKlw3Vxz3XUmdv9kfjuWrcv3cHlTJCaSnpXLh2FZsipcxqSpHYbiPFIa5AsC7aRcundzFs8wxcmTnKuqZOE6zz53lHN35afkxJszdwYS5O+j71TSsi5VkwtwdFC9lfAFwdgrDfaQgEaujCDHTanOLg/49KlasyIgRIzhx4gQqlYoxY8bQtq3uV+/Zs2f57bffSEtLo0SJEkyfPh1nZ2f9sW3a6CKsR48e1W+LiYlh1qxZesdWoVAwY8YMypcvT4sWLVixYgUVKugeP6alpfH1118TERGBm5sbixYtAuDGjRsMHjyYs2fPYm2d980jZ5sRERGMHj0atVqNra0txYoVw8XFhZEjRxIWFsaIESMA6NixI19++SXnz59n0aJFqNVqUlNTqVWrFjNmzDDp2v15IfeuuHhkHRcO/U5qihrP2m3o1H+avpbo0h864dNxKF4NOnN6zxJO71mCpZVhJHPSct0q6h0rxvD0/gXS0lKxKW5L3eZ9qd+6v17OqXjuj3oBjuzZzCHfDaSkaKjdoAX9v5qofwT4w6hedOw5UB89v3/nCltWz+FFTBRuHlUZNOpHSpXR5ePHREfwx+9zCXjkB2hx9ajCp4PHYWvnBIDcUp2rDgd8t7J352ZSNBq8GzVj8Nff6XUYO/xTuvXqr4+e3719jXUr5hPzPAr3ClUY9r9JlLHV1YP+uFMjLCwskVhkPRDq1rsf3XvrohrBr/K+sZ07tJ4z+9eQmqKmat3WdB+YVXN3/oTONO/8JTUbdeb4rqUc911KESuZwfHTf9fV5dZqtRzaOs+gvmv7j7/V/2C0ssj9+ffpAxs4sXcNqakaQZ3w2WO70rrbEH1UbvrINryKNVyUPHnREf0CzJsXDrJ/629MXnRU8GNVZpl3paDj+zZxZPc6UlM01Kzfkk++zKqNPe2bHrTrMUgfEZs4rD0vYwwX9/287AClytgzaXgHXr14bvDky9unI58O/QEAqUVqrjoc3rOFg7s2kpKioU6D5gwYllXDfuLI3nT6aKA+en7/zhU2rZqbaZtVGDxqKqVts9aK+P65kpOHdP1RtWYDPhsyFoVSV6kkKTXvfOAT+zZybM9aUlM01KjXio+/zKo//NP/utO2x2B99Hzy8Ha8jDHsk+lLD1GyjD2blk7m/q1zaNTJKG1KULN+azp/PALLIrrzp6bnHkM59cYuUnR20XuwoV206jZEHz2fNsK4XbyJ4p0/upVjvqtISVHjVrEmH33xA8VL6cZQhndVo+f3mDyCClNGGmx7Mn0xYet30tTvAGe8OqIO09mA6zefU37sEMxlUqJ8j3BveI464WtmUcy7uq5O+KhpRuuEz2qXe3nTPl0d+LSnI1ZW5py+GMuvS5/o64RvWlqHjX+F6qPnPTra0buLAyWKWfI6PpVdByLZujtc0GbZMlbsWFPfoE74hGm5Lyw/c2A9J/euJTVVjZd3az4alFUL+pexXWjZ7Uv9OP15ZGtBf0xadJQSpe1JSniN74aZ+N+9RFpaKmUd3en62Tic3L30sgmq3KsfFdR9pKxN7vN3Qc0VAKkZuV+Lk/s3ZNYJ11C9Xiv6DJmi12PGmG606T5YHz2f+nVbwTj9cclhQaTb//41Ni6eYFAnPEmTdzWqgrqPdPfOW4+C4Mx94Xqsf0LTKnlnQvwbeC9O+M2bN1Eo/lkO5Ltk2bJlxMTEMHXq1A+tSp7k5YQXFPk54QVFXk54QZGfE15Q5OWEFxT5OeEFRV5OeEGRnxNeUOTlhBcUuTnhBU1eTnhBkZcTXpDk5YQXFHk54QVJXk54QZGfE15QFAYn/PQ91Tttr1lVWf5ChZxCkRP+PunYsSMSiYQ1a4y/0EVEREREREREROT98m5Dvv8N3rkT/vjx43fd5D/iwIEDgm3bt29n82Zhia3Zs2dTubJpb8YTERERERERERER+bv85yPhxujVq5e+jKKIiIiIiIiIiMj7JeM/spjyXfL/0gkXEREREREREREpOP4rb7l8l3z4lT0iIiIiIiIiIiIi/88QI+EiIiIiIiIiIiLvFXFhphDRCS9EdJQd/9AqgBoii374xanqjA9fBq6x4vqHVqHQkC4x/jrogibR8p+/efKfUiH9Wf5CBUCGkZffFDTdC0FpQIDvD3/5oVWg0fTlH1oFACRFPnx5QJWkzIdWAQBzsw9f0tTK7NWHViET4y+1K0j+Ky/YeZeITriIAYXBARcRERERERH5byG+tl6ImBMuIiIiIiIiIiIiUsCIkXAREREREREREZH3ilgdRYjohIuIiIiIiIiIiLxXxIWZQsR0FBEREREREREREZECRoyEi4iIiIiIiIiIvFfEN2YKEZ3wfwFxiUn8vHILl+8+opi1gq8/7kK7RnUFcpv2HWf/2StExb6kmLWSj1r70K9zK/3+LiOn8DIuAXNz3UDwquDGkokjTNIhISGexQt+5fbNG9jY2NDv88E0bd5SIKfVatm4bjXHjhwEoHXbDvQfOAQzM8PBd/LEURbOm8PXo8bQpl1Hk68FwIHd29izYwspGjX1GjVj8NdjsbQ0XkLv7u3rrF0xn9iYaNwreDL8f5MoXaYsAJfOneDgnu0EB/nj7lGZqbOXmHT++IREZi1dw7U7dylqbc3Qz3rRpklDgdzNuw9Yt30PTwKDsVYo2LFyvqFuj/xZtHYLweGR2NmWZsyX/aleueK/Roc3esxZvJLrt/0oamPNkH4f07ppY6EefvfZsG0n/oFBWCsVbFtteK37DBnBy9dxSMx1D+eqVKrAvGmTTNYjISGBhQt+4+bNG9jYFOXzzwfSrHlzgZxWq2XdurUcPXIYgDZt2zFw4BeYmZlx7949pk75wUBerVYzceIPNGos/E7GrsXMZeu4euceRa2tGfZZT9r4NBDIbdl9iIOnLxAd84KiNkp6tG3Bp93a6/c/ex7LjCVruO8fiG2pEnw7+DPqVq9i0nUoLHbxht5d7fm0pxNSK3NOX4jh12X+pKYZfybdonFpvvjEmTIlrYiO1bBqUxDnLr8QyC342Ys61YvTtOsZ0jNyP7fz8E9x6N8D66oViNy2H79B3+cq6zp6AG5jhyCRy4jadYR7X08lI0VX3k7mbE/132dRzNsLVegz7o2ezouTl0y+BnGJScxYuYkrfg8pZq1k+MddadvYWyC3ad9RDp65TFTsS4paK+nZpgn9OrcRyN188IRh039jYPd2fNWnq8k6/LR6G5fvPaaYUsGIPh1p17C2QG7j/pPsP3+NqNhXFLNW8FHLRvTv1AKAqNhX9Bo/20BepUnhm0+68FkH4VgzRnxCIrOXruba7bsUtVEy9LM+tG7SSPgd795n/V++evvcvmqhfl90TCz9Ro0z1EOt4evPP+HjrvnfS+ITEpm1bK1+nH712UdGx+mNuw91YyQoBGuFnJ0r5hnsv/vIn4Xr/iA4/Bl2ZUrx7Zf9qV65gknXAQpPnxQkYjqKENEJ/xfwy9q/sLCw4MiKWTwJDuebX5bj4eRAecdyBnJarZZpw/vj7mRHeHQsI2ctwbZkMdo0rKOXmffdUOpVq/TWOqxctggLC0s2/LGDoMAAfpo6CVe38jg5uxjIHTm0n8uXLrBg6WrMgCmTxlHGthztO3bWyyQmJLBj2x+CY03h9o0r7NmxmckzFlK8ZCnm/TyR7VvW8MnnwwSy8XGvmTdzEkNHjae2dyP+2vw7C+ZMYcY8XW1jhbUNHbr2IiI8lPt3bpisw7zVG7G0kLB37RL8g0MYN2M+7i5OuDk5GMhJpVZ0bNGEVo3rs2nnPkPdEhIZP3M+Y78aSNN6dTh+/hLjZ/7GX8vnYaNU/Ct0APht5VosLST4blhJQFAwE36ag7urM65OjgZyMqkVHVo1Q5PSkC07dhtta9akcdSpUc2k8+Zk2bIlWFhYsOWPrQQGPuXHqVNwdXPFOYeNHT50kMuXLrJk6TLAjB8mTaSsbVk6dOxI1apV2bkrSzc/vztMn/YjtevUwRR+Xb0ZSwsJ+9csxD84lLEzF+Du7ISbk72BnBYtU0YNpryzIxFRz/lm+jzKlCpB68b1AJjy2wqqVijPvEn/4+JNPyb9upRtS2ZTvKhNvjoUFrsA8K5ZnM96OjH6hzvEvkhh5qQqDPrUhRUbggSypUoUYfKYSnw/4z6Xb7ykQZ0S/DTBk48GXeF1XFat59ZNy2AhMS2apol8TsDMZZRu44O5LPf3DpRq3Zjy333J5TYDUEc+p86OJXhMHcXjSTqnq+bmeby6fJurnYdQpn1Tam9bxOnKbUiJNa3+89y1W7GUWHBo5RyeBIczZs5SPJwdcHO0MxTUwtSvP8fdyZ6I6BhGzVyMbcnitGmYFXBJS0tn/obtVHF3Mencb5izfieWFhKOLp3Ok5AIRv+6Gg8nO8o75LiHoGX60E8y7yEvGDFnBbYli9G2QS3KlirOuTVz9LIRz1/Q/dsZtKhb3WQ95q9aj6WFhD3rlhEQFMK4GXNxd3HGNad9Wknp0LIprXwasmnHHoN9tqVLcfTPtfrPkdHP6Tt8DE0bCH/YGGPe6k1YWFiwb80i/IND+W7mb0bHqUxqRacWPmhS6rNxl3CMjJu1gO+GDsgcI5cZP2sBfy2ba/IYKSx9IvJhEXPC/yFXrlyhR48eRvfdvXuXb7/99h+1r1JrOHn1Nl/17ohcakWNSuVpmZ0RDQAAIABJREFUUrsaB89fFcj279KaSq6OWEgkuNjZ0rS2F3ceB/6j8wOo1SouXTjHp/0+RyaT4VmlGt71GnDq5DGB7MkTR+nWoxelSpWmZKnSdOvRi5PHjxjIbFz/O526dMfGpuhb63L25CGat+6Eo7MbSqUNPT7+nNPHDxmVvXrpDI5OrjRo3IIiRaz46JMvCAkKICIsBACvGnVp4NOS4iVKmXx+lVrDmcvXGPxJT+QyKdUrV6Rx3ZocOXNBIOvpUZ52zRphZ1tasO/uY39KFC9Gi4beSCTmtG3aiGI21py9nP8LggqDDjo91Jy9dIVBn/ZGLpPi5VmJht61OXrqnEC2cgV32jZvgp2trUltvw1qtZqLFy7Qr19/ZDIZVapUpV69+pw8eVIge/zEcbr36EmpUqUpVaoU3Xv04PhxoR0DnDh+nEaNGiOVSvPVQaXWcPrKdYb07ZHZJxVoXKcGh89cFMh+1q0DFd1csJBIcLYvh493Te4+8gcgNDKKJ4EhDP64G1ZWRWjeoA7lnR04fTn/H4mFxS7e0L6lLfuPRREUmkxCUhrrt4bQvmVZo7JlSlmRmJTG5RsvAbh0/SUqdTr2ZWV6GYVcwhd9nVm+3rQ5LWr3MaL3niDlxes85Rz6dSNs3Q4SHwSQ9joe/xnLcOjfXXdODxdsalbhybTFZKg1RPkeJeHeE8r2aGuSDiq1hlNXbjG0d2fkUik1KrnjU9uLQ+euCGT7dWlDJVcnnV3YlaVJHS/8cszfWw4cp55XZVzsjF/H3HQ4ec2Prz5qr7uHVHSjSa0qHDwv7M8BnVpmu4eUoWntqtx5IvzRBHDg/DVqViqPXekSJuqh5szlqwzq2ytzvqhIo7q1OHL6vEDWs0J52jXzwc42/5f+HDl9juqelShXRmjLQh2Mj1PjY8QtjzESQIliRbONkYYUs7HmjMlzZ+Hok4JGqzV7p3//BUQn/D1SrVo15s2bl79gHoQ+e45EYo5zuSznxcPZnsDwvN/ap9VqufXoKW45flVPWbKB1l9OYMTMJTwJCTdJh8iIcMwlEuwdsqKbLm7lCQsJFsiGhYTg4lo+S861PKGhWXJPHj8iwP8J7Tp0FhxrCmEhQTi7uus/O7u6E/f6JQnxcQLZ8ByyUqkM27L2hIcan8BMOn/kMyTmEpzssq5reWcngsIi3r4xI8/mAkPz75PCoEN2PRztsyJ67i7OBIWZdnxOfp6/hC79hvDt1BkEBIWYfFxERDgSiQR7h6xomqubG6EhwjZCQ0JwdXXTf3ZzdSM0VCinVqu5cOE8LVu1EuwzRmhkVGafZDlHHi6O+faJVqvlzsMnuDrqonBBYRHY2ZZGIctyPt2d828HCo9dvMHVSUFAUKL+c0BwIiWLF8HGWvgA9lFAAsHhyTTyLom5OfjUL0lqqpanwVnHD+3viu+hSF68SnkrPfLDuooH8X6P9J/j/R4jLVsayxLFUHq6owoMIz0xKdv+R1h7uhtrSsCb+dvJLvv87WDS/H37UYDB/P0s5gX7Tl1kUM+3e/NhSFRM5j0ky6Gt4GRPYERUvjrcehyIm4PQ4ddqtRw4f51OPsK0yNwIezNG7LO+0z+ZL97ocfjUedo193k7HbKNU3eXvzlGBLpAoIntFJY+KWgytO/277+A6ITnQsWKFVm+fDk9e/akZcuWXLp0iXnz5tGtWzc6derE06dP9bLp6elMmTKFzp0706VLF/2+vKLkppKs0aCQGUbilDIZyaq8X028asdBtFotnZvV12/7acQA9iyexr7F06nt6cHIWUtJSErOVweVSoVcLjfYplAoUKlUAlm1WoVCoTCQU6tUaLVa0tPTWbF0IUOHj8Tc/O+ZnkatQp6tfblCmamj8Huoc8i+kTcmayoqtQaFXGawTanIvz9yUrWiO7EvX3Ps3CXS0tI4dOocEVHPUWvydzAKgw4AKpVaoIdCITdqF/nxw5iRbFu9mL9+X0LNalX47seZJGRzfPLTQ2bUPo3ZhNrAPuWZdqzN4XRevHAeGxsbqlXzMk0HtQaF3HCcKuRyktV598mabbvRZmjp2EKXc56s0qDMeU3lcpP6trDYxRtkUglJyWn6z4lJ6QDIZRKBbEYGHD4ZzdSxlTm5qwlTx1Zm7tInqDW6pO+K7kqqVS7Kzn3/3FnKiUQhJy0uy9lPi0sAwMJagYVSQWp8goF8WlwCEmvTUg6S1WqDH1QASnn+fbJ6x34yMrR0apaVqzxv/V/6iPrboFJrUOa8h8ilJKk0eR63atdhtFotXZrUE+y7/TiQl3EJtPQ2Pe1BpTYyX5hwLfLC7+FjXsXF0ayBUEdjJKvVgnGqlMvyHac50Y2RVxw7d5m0tDQOnjpPRPRzNKbOnYWkT0Q+PKITngc2Njbs3LmTsWPHMnz4cGrVqsXu3bvp2rUry5cv18sFBATw8ccfs2/fPtq3b8+yZcvemQ5yKyuSckxSSSo1clnuE/FfR85w8NxVfhv3FUUsLfXbq1csj7RIEaRWRRjYrS3WCjm3Hj3NtZ03yGQykpMNHZrk5CRkOW4uoIs2Z5dNTk5GKpNhZmbGoQN7cXF1o2Ilz3zP+YZzp47S/6PW9P+oNbOmfouVVIYqOcs5e/O/TCYXHKvTxdCRUyUnGZU1FZnUiqRkQyczKTnv/jBGUWtrZn3/Ddv2HqbzFyO5fOsudbyqUKZk8X+FDgAymVSgR3Kyyqhd5Ee1yhWxsiqC1MqKzz7qhlKhwO/Bo/wPzNRDJbDP5FxsQiqwT1mmfWbn+InjtGjZSrA9Vx2kViQl5xynqjwdph0Hj3PozEV+nfSNfpzKZcLxnqxSmdS3H9ouWjctw9G/GnP0r8b8+mM1VOp0FPKsqLdCLsn8PumCY+tUL8bwz90YOfE2zbufZcT3dxg/sgLurgrMzODbYR4sXB2Q50LMv0t6UjIWNkr95zf/pyUkkZaYhIW10kDewkZJeoJpPxDlUilJOX6U5jd/bz98moNnrzB//Nd6uzh3w49ktZrWDU1bn5AdmdSKRCP3EEUeefLbjp7jwPnrLPh2CEUshU8u9p+7Rou6Xsilubch1MPIfGGibefGoVPnaFrf2+Q25FLpW49TYxS1VjJ7wmi27jtCp0GjuXLrLnW8PClt6txZSPqkoNFq3+3ffwFxYWYetG+vq1hQpYquMkHzzGoLVatW5dixrDxSV1dXPD11jmWNGjU4derUO9PBqVwZ0tMzCH32HKfMR1f+oRGCNJM37D11iQ17j7FyyjfY5jMhmIEgAmgMO3sHMtLTiYwIx85e98g/KDAQRyMLKx2dnQkOekqFirrFn8FBT3Fy0sn53b7JvXt+3Liuy4dMTEgg8GkAQYFPGTp8lNFz+zRvg0/zrAoBi+b+SEhQAA18dJVZQoICKFqsBNZG8ssdnF05c+Kw/rNarSI6KgIHJ9d8v3NuONqVIz0jnbDIKBwzH2kGBIfq0wnehppVKvH73GkApKWn03vYt3zcpd2/QofseoRHPsMhMwUiICgEV0eHfI40AZ1xmiRqb+9Aeno6ERER2NtnpnUEBuLk7CyQdXJ2JigokIoVdZU+goICcXIylIuJieGunx8jRxq3SWM42ZU10idhufbJ/hNn2eR7kGU/TaBMyaz8TVdHeyKjn5OkUukjqP7BYbTxqW+0nex8aLs4duY5x84813+eOrYS7q4KTp6PAcDdVcmLVynEJ6QJjvVwU3LnfhyPA3QR6Uf+CTx4kkDdGsWJeq6mkrs108bp5tg3D9F2rW/A5NkP8HsgTEV7GxLu+2PjVZFnO3RrS2y8KqGOiiH15WsSHwQgd3NEolToU1KsvSoRuXW/SW0bnb9DwvOYvy+yYe8RVk4dYzB/X7v3iIeBobQfOh6ApGQV5ubmBIRG8ut3wkXp2XEuW1qnQ1QMTmV1+c1PQiNxszeeV77nzBU27DvBqskjsC1ZTLBfnZLC8at3+PWbL/K/ANlwNDpGQv/2fKHRpHD64hVmjP/fP9Qh93GaFzWrVGLNL1OBzDEy/Dv6djZt7iwsfVLQaMUShQLESHgeWFnpflGam5tTpEhWCTxzc3PS0rJuJHnt+6fIpFY0967Oyu0HUKk13Hn8lDPX/ehgpMTVofPXWLptL0smjsDB1nCxYVTsS+48fkpqWhqalFQ27TvO64Qkqld0E7STE6lURv2Gjflj83rUahUP79/j6uWLNG/RWiDbvEUb9vju4EVsDC9exLJ713ZatNItYho1ZjxLV6xjweJVLFi8ivIeFfj4k358NsD0iaNJi3acPHqA8NAgkhIT2LVtA81atTcq692gCWEhgVy5cJqUFA07/1yHk0t57B11TldGejopKRoy0tPJ0GpJSdHk23cyqRVN69Xh9627UKk1+D18wvlrN2nbVFhmKyMjA01KCmnp6Wi1WjQpKaSmZrX/JDCYtLQ0kpJVLF3/J7YlS1KvZv7pD4VBB50eUprU92bNH9tRqdXcffiYC1ev08ZIfmaWHmlotRjoER0Ty92Hj0lNTUOTksKfu/YRF59AVRNL4kmlUho2bMTmzRtRq9U8uH+fy5cv0aJFC4Fsyxat8PXdRWxsLC9evMB3105atTK045MnT1C5siflytkJjs/9WljRtF5tVm/dreuTR/6cu3aLdk2F5QGPnL3Eij92snDqWOzLGi48c7Iri4eLE2v/2oMmJZUzV27wNCSMZvWFpcuM6/Dh7eINh09G07F1OVwc5SgVEgb0duLQCeM5rw/9E/CqUhR3V12ah4ebkuqeRQkITiIxKZ1uAy4xcNR1Bo66znfT7gEw6JsbPHgSn+v5zSQSzK2KYCYxz/a/MBUmYvMeHAZ+hLJyeSyKWuM+cRjhG30BSPIPJv7OQypM/hpzqyLYdm2FTbWKRO06ImjHGDKpFc28a7Bq+z79/H32+h3a+wjTCQ6fv8ryrXtYPGkU9jkWAw7t3YUdv/3I5jkT2TxnIj61vejaohGTh/U3SYfmdb1YseMQKrWG208COXPjHh0aC6Pqhy7cYNlfB1g6YRgOZYwvWD99/S42Chl1TMyLz9JDSpP6dVnz5w5UajV+Dx9z/uoN2jYTlv/U22daGlqE9glw9so1rBUKalUz/cnqm3H6+1Zfg3Ga/xjByBgJ0Y+RJRu2UqZkCerVNK26U2HpE5EPj5nWlFDo/0MqVqzIzZs3USgUhIeH07NnT65c0UVwr1y5wpw5c9i1a5fB//nty4/4m8arNMQlJvHTyi1cufuIokoFI/rq6oTfehTA6NnLOLteV+O366ipRL98RRGLrAcc7RvX5fvBfXka9owfFq8j/HksVpYWeDg7MLJvVzzLG0YBI4tWNqpDQkI8i3+by+1bN7G2saF/Zp3w+/f8mD7le7btOgDoIusb1q7i2BFdVKl12/YM+OJLo4/1J40fQ9PmLY3WCVdn5P5Ibb/vVvbu3EKKRoN3o2YMyVYn/Nvhn9GtV3999Nzv9jXWrfiNmOdReFTwZNj/JlHGVheFOn38IMsXzDRou2nL9gz/n64+tX2K8SoMulrMv3Ptzj1srJV89Vlv2jRpyJ0Hjxn7868c+2M1ADfvPWTUlFkGx9aoUoklP00EYOr8ZVy+eQeAejWq8b/B/SleLP8ydB9Ch3SJ8TrsujrhK7h++y421kq+7N+X1k0bc+f+Q8ZPn83hbRsAuHX3Pt/88JOhHlUrs3DGVIJCw5j+62Iio6IpUsQSd1dnhvb/hEoe5QXnS7QURoFAVyd8wW/zuXXrJjY2Nnz++Rc0a95cX/v7TelBrVbLurVrOJJZJ7xt23YM/GKQgX0O/XIwPXp+RNu2xqNaxVXGF9XFJyQyY+larvndp6i1kmGZ9YdvP3jCtzPmc2LLCgB6DvuO5y9eGTxSbtukAeOGDgB0dcJ/XvI79/0DKVuqZK51wjPMhA5lQdtF9wl559L26erApz0dsbIy5/TFWH5d+kRfJ3zT0jps/CtUHz3v0dGO3l0cKFHMktfxqew6EMnW3cJFe2XLWLFjTX2DOuHfH/5SIOcxeQQVpow02PZk+mLC1u+kqd8Bznh1RB2m60vXbz6n/NghmMukRPke4d7wHHXC18yimHd1XZ3wUdOM1glvdHW5YBtkvudhxSau3n1IUaWCr/t2o21jb2499Od/s5dyesMCALqN/IHnL19RxCIrhbCdjzcTBn8iaHP6sg2UKVnMaJ1wSZqwT+ISk5i+eitX7j2hqFLOyD6daNewNrcePWXU3FX6Mndd/vcT0S9fG95DGtVm4he99Z9HzFlBFTcnhvXKfYGoSmG8qkl8QiKzlqzi+hv77KerE37nwSO+++kXfenBW/ceMGryDINja1SpzOKfs+r4j5k2G0+P8gz+pFeuephnpAq2xSckMnPpGv04/eqzXpnj9DFjZ8zn+JaVgG6MjJw6x+DYmlUqsmS6rt781PnLuXTLD9CNkTGDPzNaRtRKZbyUZUH3iXXdt1vQ+z7YceXd5pN9VO/fH0cWnfBcKExOeEGSmxNe0OTlhBcUuTnh/x/JzQkvaHJzwguS3JzwgsaYE17Q5OeEFxTGnPCCJjcnvKAx5oQXNLk54QWNMSe8oMnNCS9oCoMTvv3yu3XCe9UXnXCRd4johGchOuGFC9EJz0J0wrMQnfAsRCc8C9EJz0J0wrMQnXAh4sJMERERERERERGR90phDfmqVCq+//577t+/j0QiYfz48fpCHNk5fvw4y5YtIyUlBa1WS8+ePfniC92atl27djFz5kx9cQAHBweWLl2a77lFJ1xEREREREREROS9klFI33K5Zs0alEolx44dIzg4mE8//ZSjR48avFMCoHTp0ixfvhxbW1sSEhLo0aMHXl5e1KmjW1DbsGFDFi1a9Fbn/vfH8kVERERERERERET+BocOHaJPnz4AuLi4ULVqVc6ePSuQq169Ora2urffWltbU758eSIi/tkLxMRIuIiIiIiIiIiIyHvlXaejxMfHEx8vLFNqY2ODjY1plcYAIiMj9WkkAOXKlSMqyng51Tc8ffqU27dvM23aNP22q1ev0rVrV5RKJUOGDKFZs2b5nlt0wkVERERERERERN4r79oJ37BhA0uWLBFsHzFiBCNHZpUn7d69O5GRkUbbuHjx4luf9/nz5wwfPpypU6fqI+PNmjWjQ4cOSKVSHjx4wJAhQ9i4cSPlywtL7WZHdMJFRERERERERET+VQwYMIDu3bsLtueMgvv6+ubZjp2dHREREZQooXt78bNnz6hXT/hCLYAXL14wcOBABg8erH+rOqA/FsDT05NatWrh5+cnOuH/JgpDybESmrwfwRQUcVal8xd6z1gUglJfABor0x+rvS/MM9I/tAoAxKaWyF/oPfNcYvytdQVNQuP8X2X/vplw7M6HVgGARtM/fHnAC955vz6+oJDIPvxSLyvbwlHSVJv64ctxlPL88HMWgNfBD1+iMOMdd8fbpp3kRrt27di2bRvVqlUjODiYu3fvMm/ePIHcq1evGDhwIJ9++im9ehm+JCo6OlofFY+IiOD27dsMG5b/nCA64SIiIiIiIiIiIu8VbSGtjjJo0CAmTJhA69atMTc3Z/r06SiVSgAWLlxImTJl6Nu3L6tWrSI4OJht27axbds2APr370/Pnj3ZsmULJ06cQCLRBVPHjBmDp6dnvucWX9ZTiHh96+SHVoGUQhB1hcIRCS+VGPyhVQDESHh2As09PrQKZGg/fKQRCkckPLWQRMIbmwkrGRQ0YiQ8CzESnkXhiYSf/tAqsOkdD9N+Td5tex8CMRIuIiIiIiIiIiLyXhFDvkJEJ1xEREREREREROS98q5zwv8LfPjnViIiIiIiIiIiIiL/zxAj4SIiIiIiIiIiIu8VMR1FiOiE/wuIS0xixspNXPF7SDFrJcM/7krbxt4CuU37jnLwzGWiYl9S1FpJzzZN6Ne5jUDu5oMnDJv+GwO7t+OrPl1N0iE+IZHZS1dz7fZditooGfpZH1o3aSRs++591v/ly5PAYKwVCravWqjfFx0TS79R4wzkVWoNX3/+CR937WiSHgkJ8SxcMJ9bN29gY1OUAZ9/QbPmLQRyWq2W9evWcPTIIQDatG3P5wMHYWamW52dnp7OH5s3cuzYEVQqFeXK2TFz9lz9iui8iEtMYubyDVzxe0AxayXDPulO28bCmqKb9x7h4JlLRMW80PVH22Z81qUtAC/j4vlt3TZuPXyCSq3Bzcme0f17UdXDzaTrEJ+QyJzFK7l+24+iNtYM6fcxrZs2Fsjd9LvPhm078Q8MwlqpYNtq4YsNduw7yPa9h3gdF0+Z0iWZOXEsjvZ2JutRGOwC4PCePzi4ayMajYa6DVswYNh4LC2NLxC7f+cqm1bO5UVMFG4VqjJk9BRKlSmXtf/2VbZtWMyziBAUShv6fjGaeo1bm6THkb1bOLhrIykaNXUatqD/V9/nqseDO1fZtGoOLzP1GDTqR70eiQlxbFwxmwd+VzEDqtZsQP+vJiCT526jlsWKUmXRdEo2a0jqy9f4/7SAZzsPCOQsbKypNOt7SrXU2UzY2q08/WUZAFL7cjS6uNdQXinn0eRfCFm2waRr8IYzBzdwau8aUlLUeHm34aNBU7Awci3S0lLYsngcYYH3eRUbybDJ63D3zJrj0lJT2L1hFnevnSA9PRXXijX5aNBUipawzfXchWHedB7+KQ79e2BdtQKR2/bjN+j7XGVdRw/AbewQJHIZUbuOcO/rqWSkpAIgc7an+u+zKObthSr0GfdGT+fFyUsm6QBgWbwoVZf8TMkWDUl98Zon0+bzbLsRuyhqTeU5EynV2geAsN//JGDWUv1+62qVqDx3EtZVKpKemETYur94+ovp5SEtitpQaeY0SjRuQOqrVzydt4jn+w4J5aytcf9hHCUz57SILdsIXrxCIFfMuzY1t6wleNkqgn5bKtifmw6Vf5lGCZ+GpL58xdNfFhG996BQzsYaj6njs3TYvI2gBVnftcH5QxQpVRJtegYA8Tduc7v/VybpACBRWuPwzTisa9UhLT6OqPWreX36hEDOzMISu69GYtOgMWYWFiQ/uEf4kvmkvYg1kCtiZ0+FZeuIO3+GsF9nmKxHQSI64UJEJ/xfwNy1W7GUWHBo5RyeBIczZs5SPJwdcHPM4ShpYerXn+PuZE9EdAyjZi7GtmRx2jSsqxdJS0tn/obtVHF3eSsd5q9aj6WFhD3rlhEQFMK4GXNxd3HG1cnBQE5qJaVDy6a08mnIph17DPbZli7F0T/X6j9HRj+n7/AxNG0gvDHmxvJlS7C0sGTzH38RGPiUaVN/wNXNDWdnw+9z+NABLl+6yOKlKwAzJk+agK1tWTp07ATAH5s38vDhA36dt5DSZcoQEhJMkSKmrej/9fc/sLCw4ODqX3kSHMa3sxbj4ewo6A+tVsuUrwfi7uxARHQMo39egG3J4rRu5I1KraGyuwujB/SieFEb9p08z7ezF+O7dBZyqTRfHX5buRZLCwm+G1YSEBTMhJ/m4O7qjKuTo4GcTGpFh1bN0KQ0ZMuO3YJ29h89yYFjp5kzeTzOjvZERkVjbcIPkTcUFru4e/MSB3ZuZPzPSyleojSLZo3D949V9B4wQiCbEP+axbPH88WISdSo68OuLStZNncSU+bqdIgIDWT5/MkMGT2VqjW8USUlkpSUaJoety5xcOcGxv20nGIlSrN41lh2/7mSXv1HCmQT4l+zZM53DPx6sk6PP1aw/NfvmfzLegB2bVlOcmI8c1fuQauFpXPGsXvrKvp+MSbX81f+5QcyUlI5Xbkp1lUrUWvrMuLvPSLp8VMDuUozxiORSTlbsw1FSpWgru8aVOGRRP6xG3XEM044Z80ZMid7fK4fInrfMZOuwRse3TnPyT1rGPbDWmyKl2b9/NEc3rGETn2N6+9asRY+7fuxcaFw/9lDmwj2v83YObuQyq3Z/vuP+K6fyedjFhppSUdhmDc1kc8JmLmM0m18MJdZ5SpXqnVjyn/3JZfbDEAd+Zw6O5bgMXUUjyfpahXX3DyPV5dvc7XzEMq0b0rtbYs4XbkNKbGvTNLDc95kMlJSOeXug3W1StTevoKEu49JfBRgIFdp1gQkMilnqrbCqnQJ6u5bhyo0kogtupedVF8zl+h9x7naYQAyZ3vqHdlC/N1HxBw6ZZIeFX6cSEZqKhcaNEdZuRJeqxeT+PAJyQGG9uk+6TskMimXmrWnSMkS1Ni4CnXkM6J2Zs0dZhYWuP8wjrjbfiad+w0Vf5pERmoq5+s0Q+lZieprl5D48DFJ/oY6eEz+DolUysXG7ShSqgQ1t6xGHRHJs+1ZOvgNGsmrC1fe6vxvsB/+Ddq0VB580gOpmzuu02ahCnyKJjTYQK5Ut57IK3ni//Ug0pOScBj1LfZfjSJkxhRBe6onj/6WLiIfDjEn/B9SsWJFkpKS3lv7KrWGU1duMbR3Z+RSKTUqueNT24tD54QDv1+XNlRydcJCIsHZrixN6njh9zjQQGbLgePU86qMi13Zt9BBzZnLVxnUtxdymRQvz4o0qluLI6fPC2Q9K5SnXTMf7GzL5NvukdPnqO5ZiXJlTCtHqFaruHjhPJ/1G4BMJqNKlarUq9eAUyeF0YMTJ47TvUdPSpUqTalSpejeoycnjh8FIDEhgT17fBk5+n+UsbXFzMwMFxdXk5xwXX/cZGifrpn94YFPneocOntZINuvazsquTnr+8OnTg3uZDpD9ral+aRTa0oVL4bE3JxurZqQmpZOaGS0CTqoOXvpCoM+7Z3ZH5Vo6F2bo6fOCWQrV3CnbfMm2NkKI4YZGRms37qDEYP64eLkgJmZGfblymJjbZoTXljsAuD8qQM0ad0FB6fyKJQ2dOn9BedP7jcqe/3SKewd3fBu1IoiRazo3ncIocH+RIYHA7B3+1qat+1O9doNkUgsUNoUw7acg9G2cnLh5H58WnXFXq/H4Fz1uHHpJHaO5anbqBWWRazo9vFiUWjMAAAgAElEQVSXhAX78yxTj9jnkdSq1wyZXIlcoaRW/WZEhAYabQtAIpdh27k1AbMWk56UzOsrN4k5fAq7Pl0EsqXbNiNo8VoyVGrUYZGEb9mFwyc9jLZr16cLry7eQB1m/LXPuXH97B7qNe9BWUd35MqitOrxFdfPCH8IAlhYFKFJh/64VaqNubnwpWUvYyKo6NUI62KlsCxiRY367YgKDzDSko7CMG8CRO0+RvTeE6S8eJ2nnEO/boSt20HigwDSXsfjP2MZDv11bwJUeLhgU7MKT6YtJkOtIcr3KAn3nlC2R1uTdJDIZdh2aY3/jEU6u7h8k+eHTmH3sdAuyrRvTuDCNWSo1KhCIwnfuBP7fll2IXOyJ/Kv/ZCRgSoojNeXbmBd2d0kPcxlMkq3aUXQgqWkJ6uIu3GL2BNnKNutk0C2ZPMmhK5eT4Zanen4+lKuZzcDGccv+vPq/CWSA4NMOr9eh3atCJyXqcP1W8QeP03ZHkZ0aNmUkJXrdDqERxK5zZdyvYRvZ/w7mFlJsWnUhKhNa8lQq0h+cJf4Kxcp3kL4BKaIbTkSbl4j7fUrtKkpvD57CmmOoFPRJi1IT0ok8c7Nd6Lf+yJD+27//guITnghJ/TZcyQSc5zsspwoD2cHAsOf5XmcVqvl9qMA3ByyHrE/i3nBvlMXGdTz7d6cFRYZhcRcgpN9VlvuLs4EhYW/VTs59Tt86jztmvuYfExERAQSiQR7hyyHyNXNjZCQYIFsaEgwrq5ZqR2uruUJDQ0BIDg4CIlEwoXz5/js0z58OXgg+/ftFbRhjNBn0Ub6w5HAfBwUrVbLnUf+uDkYT/N4EhxGWloaDmXzdzzDIp8hMZcYpIz8nf6IefGSmBcvCQoN46MvhtNnyEjW/rGdjIwMk44vLHYBuui1k0tWDXEn1wrEvX5JYrzQ+YkIDcTRNUvWSiqjTFl7vYP79PE9ACaN6suoz9uzYv4UEhPiTNIjMsywbUfXCsS/fmFcj7BAnIzqofuh1qJ9L25fP0dSYjxJifFcv3QSr1oNcz23vLwz2rQ0kp+G6Lcl3HuMsqJxJ+lNatab/5W5OFN2fboQsW2P0X15ERUeQDnnilntOFUkIe4FSQl5O6TGqNesB8FPbhH38jkpGhU3L+ynUnVh+tUbCsO8+TZYV/Eg3i8rihnv9xhp2dJYliiG0tMdVWAY6YlJ2fY/wtrTNOdX7u6CNi2d5IBg/baEu49y7e/sdoGZGdaVs2w0eNlG7Pt2xczCAoW7C8W8axB72rS0GLmrM9r0NFTBWfaZ+OgxCo9cXuudQw9FhSx9rezKUe6jbgQvWWnSufU6uGXqEJRtjDx8gsIjl2uZU4ccY6nKgtk0vnGaGhtXoKxcwWQ9rOwdID2dlIisuVIV+FTgXAO8PHoQhWdVLEqUxMzKimLNWxF//ap+v7lMTtl+A3m2apnJ5/9QaLXv9u+/gOiE58KRI0do164d3bp1Y8WKFfqI99GjR2nXrh1du3Zl6VLDHLSKFSuyaNEiunbtStu2bTly5Mg/1iNZrUYhkxlsU8plJKvyfqX66h37ycjQ0qlZA/22eev/0keG3gaVWo1CbqiDwgQd8sLv4WNexcXRrIEwlzpXPVQqZHK5wTa5QoFKpRLIqtVq5AqFQE6r1RIbG0tSUhIREeGsWbuR7ydN5o8tm7h180b+Oqg1gv5QyGUkq/O+Fr9v30eGVkun5kInKilZxbTFaxj0UWeUOb6fUR1URvpDITd6HfIiJvYFANdu3WXdorks+HkyJ85d4MBx0x4tFxa7AN1TEpkiK4L/Jm9apUoWyGrUychz5FXL5ErUmbIvXzzn4ulDjBw/m1+W7yQ1RcPmVb+apofKsO03eqiN6aFKFuR3Z9fDuXwl0tPSGNmvJSP7tcTc3JwW7XsJ2nmDRCEnLcHwqVxafCIWSqFNxZ48j+voQUiUcuSuTth/0h1JDrsGKFa/FkVKlyJ679E8vrVxUtQqZDLhtdCo3/7JYalyzhQrWY7pXzdn0hf1iI4IpE3P3F+OUxjmzbdBopCTFpeV8pQWlwCAhbUCC6WC1PgEA/m0uAQk1gpMwUIhJy3BMJ1KZxfC42OPn8P1f0N0duHmhEO/HkiyjfGYw6ex7daG1s9v4XPzEOGbdhJ/855p31EuIy0xh30mJCJRCO3z5bmLOA/9AolCjszJkXIfdUMiy7r+HpPH6yPqb4NELhfokJ6QiMTIGHl55gLOwzJ1cHbErnc3JNls4MHo77nYuB0XG7Xj1eVrVN+4Agsba5P0MJfJSE82nBMykhIxlwn10ESEkxoTg+fmnVTdcRCpozPP/8ham1G2/xe8PHKQ1BcxJp1bpHAhOuFGiI2NZcqUKaxYsYLdu3cjzRx4r1+/ZvLkySxbtow9e/YYTV8wNzdnz549LF++nClTpvDixYt/pItcKiUph3OVpFIjl+V+Q9h++DQHz15h/vivKWJpCcC5G34kq9W0bljnrXWQSaUk5ZjsklWqPHXIj0OnztG0vvdbtSGTyVDlmLiSk5ORGXEepFIpydlkVclJyGQyzMzMKGKl67e+fT/DysoKV1c3mjRtxvVs0YVcdZBaGekPVZ436O2HT3LwzCXmTxip7483qFNSGDtnCVU83BjQvX2+5weQyYz0R7LK6HXIC/116NEZa6WCcrZl6NK2FZev3zZNjw9oFxdPH+bLPk35sk9Tfp02GqlUhio5y9FQZ/4vM3JTs5LKUakMb8RqVRLSTNkiRaxo3LITZe2dkcrkdProc+7cuGhUj0tnDvHVxz589bEP86ePQiqTo0rOavuNHlJjeuSQBZ2dvpFdPncCtnZOLP/zLMv+OEOZsg6s+m1yrtckPSkZixyOmcRaQVqi8AfAowmzSFdp8Ll6iJqbF/Ns1yHUkVECOfuPuxK9/xjpScI2cnLj/H6+/7wO339eh9Wzh1JEKkOd7Tq/+d9KaprzmJ1da38mLTWFn1ZfYNb663h5t2L17NwXwRWGefNtSE9KxsIm6wfLm//TEpJIS0zCIkeKmIWNkvQE037MpCUlC4+3VgicUYCH42aSoVbT5NZhav65lGc7DurtwrJ4UersWs3TOcs5VroGpyo1o1TLxjgO7mvad0xWCRx/C6XSqG35/zSbdLWaesf2UW3FQqL3H0ITpUvVK9miKRYKBc8Pvn2QKz05WaCDRKkg3cgYefLjbDLUGuqf3k+11QuJ3pulA0DcjdtkaDRkqNWELFtDWnwCRevWMkmPDJUKSY6Ai7lcQYaRH+v2w7/BzNKS+707c697O+IunsX1pzkASN3cUdaoTezu7Sad90OTkfFu//4LiE64Ee7cuYOnpycuLi4A9OzZE4BHjx7h6emJm5suzaFPnz6CY3v10kWq3Nzc8PT05PZt0xya3HAqV4b09AxCnz3Xb/MPCTd4XJqdvacusmHvEZb+MBrbksX126/de8TDwFDaDx1P+6HjOX7pBlsPnmLs3PxXtjvalSU9I52wbDfpgOBQXB1Ny5PNiUaTwumLV9465cDe3p709HQiIiL024ICAwWLMgGcnF0ICsrK6wwMCsTJyRkgK03F4HG8aTo4lbPN7I+syTggJFy42CuTfSfPs3H3YZZMGUOZbP0BkJKayvi5yyhdsjgTvvzMNAUAR7typGekEx6Z9Wg9ICjkrfvDyd4OSwsLweNn0/X4cHbRsFk7Vm07w6ptZxg7dSH2Tm6EBfnr94cG+1O0WAmUNsUEx9o7uRGaTVajVvH8WTj2Tjq7cHRxxwzDVI3caNC0PSu2nmPF1nOMmbIIO0c3woKfGOhhU6ykcT1yyGrUKmKiwrF30j2eDw16QrO2PbCSypDK5DRv2xO/mxdy1SX5aQhmFhbI3Zz026yrViTxsTB3OvV1HHe/Gs9pz6ZcaNQVM3Mz4nJENM2lVth2bUvkVtNSUWo37sSs9deZtf46QyaspKyDO5Ghj/X7I0MeYV20JApr4bXIj8iQR9Rt2g25shgWlkVo3PZTQp/eJTHe+MLEwjBvvg0J9/2x8cpK3bHxqoQ6KobUl69JfBCA3M0RSTbn0dqrEgkPcs+Jz05yQDBmFhLk5Z2zjq9WicSHRuziVRx+g8dxyqMJF+p1BjMz4m7cBUDm4oA2PZ3IP/egTU9HExnNs50HKd3GtHeHJweFYCaxQOacZZ/KShUECyIB0uLiefjtRC42bMnVDj0wMzMn3k9nn8UbeGNdzZOGF0/Q8OIJynRoi8OAz6i6fEH+OgRm6uCSTYfKFUnyF16LtLh4HnzzPRfqtuBqmx5gbk78nTyi/lptnnNFdjQR4SCRUMTOXr9N5lYetZHUSpmbO6+OHyY9MQFtWiqxe32RV/REYlMUZbUaFLEtS6X1f1F58y5K9ehD0UZN8Fi0yiQ9ChoxHUWI6IQXcmRSK5p512DV9n2o1BruPH7K2et3aO8jfFx/+PxVlm/dw+JJo7C3NcwtHtq7Czt++5HNcyayec5EfGp70bVFIyYP62+CDlKa1K/Lmj93oFKr8Xv4mPNXb9C2mTAnMyMjA01KCmlpaWjRoklJITU1zUDm7JVrWCsU1Krm+VbXQiqV0aBhI7Zs3oBareLB/ftcuXyR5i1aCmRbtGjFbt+dxMbG8uLFC3bv2knLVrpFL+XK2VGlSlX+2vYHqakphIWGcvbMaep61zfhWljRrF5NVm/bq+uPRwGcvXab9k2Exx4+d4Xlf+5m0Q//E/RHWloa389biZWlJVO+Hoi5uelDUdcf3qz5YzsqtZq7Dx9z4ep12hhxXvX9kZ6GVotBf0itrGjeuAF/7tpLcrKK57Ev2H/kBA3r1nwLPT68XQA0at6Rs8f3EhEaSFJiAnv/WkvjFsLFVgC16zcjIvQp1y6eJCVFw+5tv+Po4oGdgwsAPi07c+7EPp5HRaDRqNm/cwM16uaef2xUj7BAkhMT2Ld9Ta561KrfnIjQp1y/eILUFA17tq3GwcWDcpl6uLp7cvbYblI0alI0ak4f9cXB2cNoW6CLNEbvP4b7hJFI5DKKedekTPsWRG4TrneQuThiWbwomJtTqmVjHPr34uk8wxJwth1bkfY6npdGFjOaQh2fLlw9tZOo8ABUSfEc911JnabdcpVPS00hNUWj+y5pqaSmaNBm3mkdy1fl+rk9qJITSE9L5cKxrdgUL4PSprjRtgrDvAlgJpFgblUEs/9j77zDorjaPnzDUrbQRATpRVDsGHvBLnbBHqPGEk2iUdOMRo0ae4td7MbElhh7xd4VW2zYEAUEQRRQpO1Slv3+WASXWWR9P6O+eee+rr2u3Z1nzvzmnCnPnPOcZyTGr3wXTjyN27ALlwHdsKhYDhNrS7zHDuHROm1GkoyIaFKv36H8+K8wNjfDIbAlVlUrkLDdsJ5gdaaSJ3uO4DMu/7ioWwP7ds2J/1PPceHpiqmtjfa4aOWP64AePJitPS4y7keDkRGO3duDkRFm9nY4dmlL2s1wQTn6yFMqSTx0FM9vhmIsk2H9kR92LZuSsFM4cVnq5oKJjfb4tG3cEMeeXYkOXgVA1IJgLrTqxOVOPbjcqQdJR0/y+K9t3P1xgqAcvRoOHsHru6+0Gmr6UaZVUxK2CzXIXtXQtBFOvboSvVjr3Jo7lcW6ph9GpiYYm5vh9nl/TEvZkHL5qkF1oclSkXruNGX7DMTIXIq8UhWs6jXk+TFh2FdmxF1KtQjAWK4AiYTS7QPJSUpEnfqC5AN7uPtZbyKGDyJi+CCe7d9N6qXzRP70g0E6RN4/RhrNv+V54u2RlJRE+/bt2bJlC25ubqxbt45p06Zx/PhxOnfuzObNm/Hw8GDNmjXMnj2bK1euoFAoqFChAl9//TVDhw4lOjqanj17sn//fkqXLm3QdlOuHtP7/4v0DKYuX8/FsDtYWyj4qlcQrRvV4eqdCL6dGcyJ37U9AEHDf+Lps+eYmRSGPLTxr8OPgz4RlDl56e/Yl7YR5LvNNrfSqyE1LZ0ZS1Zy+fpNrCwt+LKvNh/09dt3+WHK7IIUc1dv3mbEeN0cpX6VK7J46k8Fv7+bNJNKPuUY9Enx8a0vzPVPUExLS2Xh/LlcvXoFKysr+vX/jKbNmnPzZhg/TxjH1u3aG4tGo2Htr6s5dPAAAAGt2zBg4KCCnoqkpCQWLZzH7Vs3sbaxoVu3HrRtp+ss2aVH69eWnsG0pb8VtMfQ3l1o3agu1+5E8O30RRxfvxiAzl+N0dMedRn9eR+u3A5n6M9zMTczxdio0AGfP3YEfhV1Ha0sPW2izRO+nMvXwrCytODzT3vRqkkjrt+6w+jJMzmwWRszeDXsFt/8NEVnXb8qFVk4bSIAGZmZ/BK8itDLV7FQyOkQ0IJ+PbsIenSM89R66+JdHxeRxsU7oQd2bWTftvVkZ2dRq34z+g/9sSA/95hhPenYbQANmrYBtHnA16+cQ1JiAuXKV2bQiAmUcSgczdi+aSXHQrYCUPWj+vQZ/D0KC2075Gle/8B0cNcGbZ7w7Cxq1W/Op0MK84SPG96DDt0GUL+JNvTo1vULbFg5W5uv3Kcyg0b8jF2+jsQncWxc9Qv3w2+ARoOnT2V6D/6Bsk7aXry0RsIHP1MbayovnkLpJvXJef6CiMnzebxtHzb1PqLm5hUFqQcdAlvjO/1HTK0syXjwkHuT5pF8XLeXveaWlby4Esb9GYuL3decw9dfWxcn9/3Gsd2/kpOjolqdVnT7bGJBnvDZIzvRIuhzajbSnndTh7fieZLuBOdxiw5hW8aZjLQUdvw+nYiwUHJzcyjr6k1gn1G4eVcDoJHRKcG23+V1E+BsHWGMus/4YZSfoJue8t7kxcT+to0mN/Zxslp7VLHaES3Pb/pTbuRgjGVSEnYc5ObQInnC18zApk51bZ7wEZOKzRMukQmPT9NS1lQJnkrpZtr88fd+1uYJL1W/JjW3reCIkzbcpmznNvjOHIOptSUZ96O5N3EuSUcLjwvbxnWpMPl75OU8yFOpeBpygjujp5NXJNbe3EF/pikTayt8Z0zCtmF9clJSePDLQp7uCcG6Vg2qrV7KaT9tLH6ZtgH4jPsBEytLMqMfEjl7Ic/O6A8J8501mayEJ3rzhGtyhO6NibUVFedMzs9VnsKDWQt5sns/1rU/ovpvSzlVWXte2bcPwGfCKK2GqIc8mLmAZ6e0GhQ+5ai8aBYyd1fysrJIux3Og5nzSQu7LdieXSVbvbolFpa4fDsayxo1yU1NJeG3laScOIq8clU8J8/mVlftNUJiaYXTl8OxrFELIxNTVA+jiF8VrDcdoUPv/pg5OuvNE15t/wm9Ot4lyw683fKGtHm75b0PRCe8GEJCQliwYAEymYymTZuyevVqbty4wZEjR5g3bx5SqZSAgAAWLlyo44QPGzaMo0ePolQq+e6772jd2rA0UlC8E/4uKc4Jf9cU54S/S4pzwt81+pzwd01xTvi75nVO+LuiJCf8XaHPCX/XlOSEvyv0OeHvGn1O+PtAnxP+rinOCX/X6HPC3zXFOeHvmg/BCQ8Wvpfp/8VXhk2j+qARX9ZTDP7+/rRtq23hbdu2UbVqVYyNjQkICCAgoDCX59ChQ3XWGzhwIMOHC1/MISIiIiIiIiIiIvIS0QkvhvXr13PgwAHUajXW1tZMnTr1fUsSEREREREREfmv5O0HXhieSOBDRXTCi2HIkCEMGfJmw4vh4YZNUBERERERERER+V9CDH4W8v6Dx0RERERERERERET+xxB7wkVERERERERERP5R/i0v2HmbiE64iIiIiIiIiIjIP4oYjiJEDEcREREREREREREReceIPeEiOpioVSUb/Y9grM553xIA0HwAM8CNNB9GnvAPgdy8D6PvQq18/22SphS+/fF9IDF7/9etDyE/N4Ba+f7H/I1N3v81C+D91wTkZuWWbPQ/Qp7YEy5AdMJFRERERERERET+UcRwFCEfxqO7iIiIiIiIiIiIyP8QYk+4iIiIiIiIiIjIP4rmrcejfBhhT/8fRCdcRERERERERETkH0WMCRcihqOIiIiIiIiIiIiIvGPEnnAREREREREREZF/FHFiphDRCf8v4EV6BtNWrOfCjTvYWFow9ONAWjeqI7Bbv+cQ+0+eJyHpGdaWFnQNaEzfjgEFy4dMnk9kbDzZubk4lSnN5z060qRWdcM0pKUzfdlvXLx+CxtLC77s3ZXW/vUEdht2HSDkxFkSEpOxtrKkS+tm9AlsU7B8xR87OHXpKg8fPaZ/1w4M6hn4RnWRlpbKwgXzuHrlb6ysrOnXfyBNmzUX2Gk0Gn5bu4ZDB0MACGjdlv4DPsPISBtDplar2bRhHYcPH0SpVOLo6MT0mXOwsLAouS7SM5i6YiMXwu5gY6lg6MeBtGlYW2C3fs9h9p26UNAe3Vr507djK4HdldsRfDllAQOC2jCkZ0eD6yI1LZ3Zi5dz+doNrK0sGdy3Fy2bNBLYXb1xk983byMiMgoLCws2r1qis7zn4GE8T0nB2Fg7MFbFtwK/TBpnsIYZwWu4dD0Ma0tLvujTnYDGDYT7GHabtVt2cS8yGkuFgq0r5uksj4h6yPzV63nwMBa5VEpgQDP69wgytCoAOLBrE/u3ryMrK4vaDZrTb8hoTE3N9Nreun6R9SvmkJyYgFf5Kgz+egJ29o6Fy69dZPPvi3kc9xCFhRW9Bn5N3UbCttPH4T0bOLDjd7KzVNSs34LeX4zVqyM3J4dV88fy8MFtkhMfM3LySipUqVWwXKPRsG39Is4c2QlAo5ZBdO07ouAY1odpKWuqLpuKXYuG5CQ/J3zCfOL/2iuwM7G2pNKccZQJ8AcgZtUfREwrPC5s6tag0pwxWFQoR2b0I259M4nnoVcM2v9XCT30G2f2ryYnW0mlWq3p0PdnTPTUReyDaxzfsYj4h7cwNjLGw7cObT8Zh6WNPQDHdy7m9L4VSEwK1x0yaRe29q7FbvtFegZTVm3m/M1wbCwUDOvZnjYNagrs1u09xt4zl0hIeo6NpYJuLRryaQftNSUh6TndR8/UsVdmZfPNJ53o066ZQXVgWsqaKkumUrp5A3KSU7g3aR6Pt+wT2JlYW1Jx1ljsWmnbJHb1H9yfEVyw3LKqLxXnjMOycgXU6RnErv2LB7OXGaTBfWhvXD7tgmWV8sRv3suNz8YUa+v5dT+8Rg5GIpeRsP0gN7+aSF62Nl2rzN2Z6qtnYFOnGsqYx9z8ejLJx0IN0qDdRysqTP2ZUg3qk5PynKh5i3m6L0RgJ7G0xHvsKGz9GwIQ/8dfPAxeLrCzrl0Tv3VreLh8FdELgwXLi9PgO30Sto3qk/P8OQ/mLuLpHqEGE0tLvH8aRen8a2rcxs1ELy7UUO/4fszsSqNRaxMhpl69zvUBXxqk4eU+uo8cg2XN2uSmviB+9QqeHzsssDMyNcXlq6+xadQYI4kJGbfCiFkwh5ykJACq7z2kY29sZk7i7h08WrLAYC3vijwxHkXA/5QTvn37dk6cOMGiRYtea3fhwgVycnJo1Eh78j158oSRI0eyfv36dyFTwJxf/8RUYkLIilnci37Ed7OC8XF3wcvVSddQAxO/6o+3mzNxTxIZMX0xDqVLEdBA6yB+1687ni6OmEgk3IyIYvi0hWyZPwm7UtYlapi7eiOmJibsWz2fiOhYvp+xEB8PV7xcnYto0DBh+CDKubsQl5DIN1Pm4lC6FK0a1QXAxdGeYX26s+PQif+oLpYtXYKpiSkbNv1FZOQDJk38CU8vL9zdPXTsDoTs43zoORYHLweMGD/uRxwcytKufQcANm1Yx507t/ll7kLK2Nvz8GE0Zmb6HbaizPl1M6YmEg4sn8G96Ed8O3sZPm7OlCvSHhoN/Dz00/z2SGL4jJftUeho5eaqmbtuC1W8PXhTFqxYg6mJCdt/X8n9qGjGTJlJOU93PN10HROpVEq7ls3Iym7Ihq079ZY1fdwoavlVe2MNc1etw9REwu5flxAR/ZBR0+bh7eGGl5tLEQ3mtG/emJaN6rF+2x5BOZPmL8O/bk0WTx5LQmIiQ8dOxdvDjUZ1PjJIR9iVUPZtW8foqcGUsi3Dohmj2LFpJT36DRPYpqWmsHjmaAYOG4dfbX+2b1zB0jnjmDDnVwDiYiJZNm88g7+eSBW/Oigz0snISDdIx82r5wjZ/hvfT1qBjW0Zls76nt1/Lqdr3xF67X0q+tGy4yesmDNasOzUoW1cu3iCCfP+xMjIiPmThmDn4EzT1t2K3X7l+RPIy87hqEcjrKr5Umv7ClLD7pJ+576OXaXZY5DIpRyv2ALzMqWps38typh4Hq3fjmkpa2ptXcbNERNJ2HUYpx7tqbV1GccrtyI3JdWgegC4f/M0Z/avot8Pv2FpY8+fS4ZxfOdiWnX/XmCrykilZpMe9KjSCGNjCfs3TmHnr2Pp+93qwn2r3Zaun88xePuzftuGqYmEQ8GTufcwjq9/WYWPmxPlXBx17DRomPzFJ3i7OfHoSTLDZi3HobQNret/RFm7UpxeM6vANu5pMp2/n0bz2oZ1XgBUmjuevOwcjnv7Y1nVl5pblpMWFk76Xd028Z3xIxKZlJNVWmJexpbae7RtErdxBwDV18zhyZ4jXGzXD5m7M3UPbiQ17C6JIcdL1JAV/5T705dSJsAfY5l5sXZ2rRpR7ofPOR/QD1X8U2ptXYLPxBGEj5sLQI0Nc3l+/hoXOw7Gvm0Tam5exImKAWQnPTeoLnzGjyEvJ4dz/s2x8K1A1eWLSQ+/R+b9Bzp23j+ORCKVcqFlO0xtbam+dgWq+Mc82bGrwMbIxATvMaNIvX7DoG2/pPzPY8nLyeFs/WZYVPSl2qrFpN/Ro2HcD0hkUkKbtsWstC1+61aiin9MwrZCDWFfjOD5uQtvtP2XuI74Hk1ODmHdOiHz9sF72myUD+6jehilY2ffpTuKSlW4M7gf6vQM3L4bheuwb4n8WdtRcr1DYUebsVRG1a27SDlZ8jHxPhB7woWIMbL62E0AACAASURBVOF6uHjxImfPni347eDg8N4ccKUqi+MXrvJFj47IpVL8fL3xr1mNkNPCE79vpwB8Pd0wkUhwdypL41rVuBEeWbDcx90FE4n25RpGRkbkqtU8SS754qnV8DeffxyEXCalekUf/GtV58BJYQ9In6C2VPBy12pwLot/7RrcCC+82bRv2pD6H1VFLpO+cV2oVErOnT1Dn779kMlkVK5chbp163P82FGB7dGjR+jcpSt2dmWws7Ojc5euHD2i7TFIT0tj164dDP/6W+wdHDAyMsLDw9MgJ1ypyuLYxWt80aNDQXs0rlmVkDMXBbafdmr1Sns40LhmNa6/0h4AG/cdpW7Virg7ObxRXShVKk6FXmBg7x7IZVKqVfKlQZ1aHDp+WmBbsbw3Ac0a4+hg/0bbKFlDFifPX2LQJ13zj4sKNKpdg4MnzwpsK/mUo03Thjg5lNFb1uOnSQQ0boBEYoxzWQeqVixPVGycwVrOHN9H41adcHErh8LCik49BnLmmLAHGOBy6HGcXb2o07AlZmbmdO41mJjoCOIfRQOwe8uvNGvdmeo1GyCRmGBhZYODo4vesooSemIvjVoE4pyvo0P3QZw7LnzoADAxNaVlx974VKyBkbHwUhx6Yi8Bnfpga+dAqdL2tOrUl3PHdhe7bYlcRtmgVkRMXoQ6I5PnoVd4uu8Yzr06CWzt2zYjcv5q8pQqlDFxPPp9Gy6fdgGgVL0aZD1JJGHHQcjLI/7PPWQnPadsoGEjAS+5dnYnNfy7Yu/sg0xhTZOOQ7l2dodeW59qjalcuw1SmQVm5jLqtOhNbMSb97y/RKnK4tilG3zZrS1yqTl+Fbxo/FFl9p+5LLDt16EFvp6umEgkeDjZ06RmFa7fi9JTKuw7c4kavuVwKmNrkA6JXIZDp1ZETNO2Scr5KzwNOY7Tx8W0ycI1+W0Sz6N123Du26VguczNWTuqkZeHMiqWlNC/sazobZCOhJ2HebL7KNnJKa+1c+kbROzaraTfvk9uSioR05bi8mlnABQ+HljVqMy9SYvJU2WRsOMQaTfvUbZLa4M0GMuk2LVqSfSiYPIylaReuUby8ZM4dGovsC3drDGxa34jT6UiKz6ehG07ceyiO2rq0r8vz8+FkhkZbdD2tRpklAloSdSCYNSZSl78fZWkoycpG9RBr4aYVVoNqrh4Hm/ZgWPXNxudK1aHVIqNfxPif1tNnkpJxs0bpISewbaVsC7NyjqSdvkCuc+fo8nJ5vmJo0g9PPWWa9O4CbnPU0gPu/5WdIr887x3J7xChQosWrSIwMBAWrduzcGDBwuWnTp1iqCgIDp27Ei/fv14+PAhoO2p7tSpE6NGjaJ9+/Z069aN+/e1jt727dsZMaKw16no75ckJibSt29funTpQvv27Zk9ezYA4eHh/Pnnn+zcuZPAwEBWrlzJo0ePqFu3rkG6AgMDmTBhAh07dqRTp048ePBAsO03IebxUyQSY9xecdJ83F2IfPT4tetpNBqu3b2PV5Fen+9mBePfdzgDf5rFR5XKU9HLrWQN8QlIjCW4OZUt+M/b3ZXI2PiSNdy5h6eL82vtDCUuLg6JRIKzS6FD5OnlxcOH0ULND6Px9PQqtPMsR0yMtp2io6OQSCScPXOaPr178vmgAezdU7xzo1Nufnu4O/4n7fFApz0eJyaz+0Qog7q2NWjbr/Io/jESYwmuzoW97+U83ImOjX3jsgCmzVtCYN9BjJw4jftR0QatE5uvwc2pcJ/Kubu9kfP8kh4dWnPgxBlyc3OJiXvMrfD71KpW2eD142IicfPwKfjt5lmeFynPSE8VOh1xMZG4ehbamktl2Jd1Ji5G+4D0IPwmAONG9GJE/7YsnzeB9LQXBumIj3mAq0f5gt8uHuVJTUkmPe31zo/esmIjcXmlLFeP8sTHRhZrr/DxQJOrJuN+dMF/qWHhWFTy0b/Cq2EtRmD5ql3RkJeiyw0gMe4+ZV19C347uPqSkZpEZnrJD/4Pwy9Txll3e/euH2fm8LoE/9SBS8f/eP36CYn552nhg2d5N2ci4xJeu55Go+FqeCReLmX1Ltt35jId/IWhZ8Uh99a2SeYrbZIWdheLYpxnnVAjIyMsKxbWQfTSdTj3CsTIxASFtwc2dfxIOmF4KIghWFb2IfXG3YLfqTfCkZYtg6mtDRaVvFFGxqJOz3hl+V0sKxn2ICD3cEejzkUZHVPwX/rdeyi8y+lfoUhdyH0Kt2Pu5EjZrkFEL11h4J7la/B8qeHhKxrCUfgYpkFRXndfK82dQcMLx6m+djkK3/IYirmLK6jVZD0qvF4rHzxApse5Tg7Zi6JyVUxLl8bI3BzbFgGkXjyvt9zSAW15dviAwTreNRrN2/38G3jvTjiAsbExu3btYtmyZUyYMIHk5GSSk5MZNWoUv/zyC3v27KFDhw6MHDmyYJ3w8HC6devGvn376N27N6NGjXqjbVpZWbF8+XK2b9/Ozp07uXnzJqdOnaJChQp8/PHHBAUFsWvXLj7//HOd9UrSdf/+fT7++GP27NlD27ZtWbp06f+rbjJVKhQymc5/FnIZmcrXv6Z51da95OVp6NC0vs7/80Z/xfG1C5g/+ivqVqtYEAf8OpSqLBRy3Z5rQzSs/msXGo2GDs0blrgNQ1Aqlcjkcp3/5AoFSqVSYKtSqZArFAI7jUZDUlISGRkZxMU9Ys2v6xgzbjybNq7n6pW/S9SQmZWFokgvvoVMRqYy67Xrrdq6jzyNho5NC+Po5/6+hS/ze9TfFKVShVxe5LhQyEtsE3389N0w/ly1hM2rg6lRtRI//DydtFdutMVqUGWhEGgo+bjQR4NafpwIvUSLjwfxyfDRdGjZhIo+XiWvmI9KpUSmKIznl8m135XKTIFtlioTuVw39l8mt0CVb/ss+SnnToQwfPRMZi/bRk52FhtW/mKQjiyVsmDbr+pQ6dFREipVpqCsLFUmmmLuPhKFnNw03bCZ3NQ0TCwUAtvEw6cp9/1gJBYK5F5uuHzaFeP8tnx+4RpSR3scu7fHyMQE595ByL3ckBRp65LIzsrEXGZZ8Fsq0+5Llur1x1ZCbDgn9ywloMcPBf9Vrt2Wr6buY9TCc3TsP5mTu5cSdl7/SAdoj02LouepXEpGCefpyu0H0Gg0dGpcV7DsWngkz16k0aKO4aEoJnrbJF1vmyQdOY3nt4ORWMi1bdK3i06dJx44gUNQAK2eXsX/SgiP1m8j9cpNg7UYgkQhJ/dFod7cF2na/bBUYGKhICc1TXdfXqQhsRTui96y5XIdBx4gNz0diUK4/rPT53AdPACJXI7UzZWyXQKRvNKe3mNHFfSovwkSuYzcohrS0pEo5ALbZ6fP4f7FQCQKOTI3Vxy7BelouPP9WEKbtiW0SVuen79I9V+XYWJpKShHH8YyGepMXR3qjHSMZUIdqrhHZCc+pepfu/DbcxCpmzuP168V2JnZO2BRzY/kQ8L49g+FPI3mrX7+DXwQTnj37t0B8PLyolKlSly7do3r16/j6+uLt7f2ybNr167cuXOH9HTtBcLd3Z06dbSTEwMDA7l3717BMkNQq9XMnj2bTp060aVLFyIiIrh7926J65Wky9PTk0qVKgHg5+dH7H/YM/kSuVRKRhEnM0Opem04x5YDJ9h/6gLzRn+FmampYLmJiYQGNapw4cYdTl0uedhKJjUnI1PXsSpRQ8hRQk6GMnfs13o1/CfIZDKUmbrOTGZmJjKZ0DmQSqVkvmKrzMxAJpNhZGSEmbk27KRXrz6Ym5vj6elF4yZNuXxZGFJSFLm5ORnKonWhRP6aOMu/Dp5g3+mLzB81pKAuTv8dRoYyi1b1hRPFDEEmk5JZ5AaUkZn5H4X5VK3oi7m5GVJzc3p364yFQkHY7ZLPBe1xUVTD648LfaSmpfP9lDn07x7E0c1r2L5yAReuhrE95Eix65w7cYDPezbh855N+GXS10ilMpSZhee/Kv+7TM9NzVwqR6nUvQGqlBlI823NzMxp1KIDZZ3dkcrkdOjWn+t/n9Or4/zJ/Qz7pCHDPmnIwinDMJfKdMpW5X+X6tFRElKpvGB9bVnpmEvlxU7MVGdkYmKp+3BhYmkhcDoAbo+chlqZRdOwA9T8K5jHW/ahyu8lznmWwt89vsJzRH9aRJ+hTCt/ko6FFiwvjhuhe5g25COmDfmIDfMGY2YuJ0tZ2CZZKu13c2nxTlvyk4dsnD+Ytr3G4l6+cO6EvbM3VqUcMDaW4Ob9EXVb9uX23weLLUcmNSddcJ6qULzmPN186DT7zlxmwfeDMTMVTpfae/oSzWtXQy4tvoyi5OptE4XeNrkzajp5KhWNrx6gxh/BPN66H1W8ts5NS1lTa/sqHsxaxuEyfhz3bYpdi0a4DuplsBZDUGdkYmJVqPfl99y0DHLTM4T7YmWBOq3kB3YAdWYmkiIPHyYKBeoM4fr3p88iT5VFnQO7qRK8gKf7D5CV8ASA0k0bI1EoSAw5JFivZA1KwQOQiYUF6gzhQ3LElJmoVSrqHt5D1eULebI3pEADwIsr18jLyiJPpSJmxa/kpqZhXduwOSx5SiUSua4OiUJBnp6HdbcR32Fsasb1oLZca9+KlDMn8Z4xV2Bn26oN6TdvkJ3w+lFZkQ+Lf93ETIlEQl5eXsHvrCz9PR9r164lNTWVLVu2YG5uzvjx44u1fRNejSs2NjYmNzf3/1Wem6M9anUeMY+f4pY/tBrx8JEgzOQlu4+f4/fdB1kx8TscSpd6bdlqtZq4J0kla3AqizpPTezjJ7jmh2FERMcKJ4bms+foadbvCGHZlNHYlzYsdtIQnJ2dtZrj4nB21oa4REVGCiZlAri5exAVFUmFCtrh8MioSNzc3AEKw1RecWZek3BCt1w97XEvJu617bFu92FWTPhWpz0u3QznblQMbb78EdA6r8bGRjyIjeOXkSXPsHdxckSdp+ZR/GNc8sNBHkQ9xMO1+GwRhmJkRLG9ra/imq8hNj4B1/xQpfvRMXgWnaxbAvFPnmJsbEzbZtqJ0PZ2trRsVJfzV67TpW1Lves0aNqGBk0Ls+4sm/sTsVERBRlMYqIjsLaxxcLKRrCus5sXZ44VZqfIUil5+vgRzm7a48LVwxsjXj02ij846jVpR70m7Qp+r5o/lkfR96jdUDtZKjb6HlY2pbGwFOooCSdXL2Kj7+HpU6WgLCfX4kcHMiKiMTKRIC/nTuYD7XC7ZdUKpN+OENjmPH/B9YGFPc3lJ33Li8thBb+fnbnEOX9t54iRRELT24eJWiTsfXuVavU7Uq1+YXafrSu+50nsXarU0YZbJcSGo7CyQ26h/7qUkhTHul8G0LjjUKo3eH3WJCMjo9cOR7uXLaM9TxMScSurnYdwLyYeL2dhmAnArpMX+H3PUVaOH4ZDaWFbqbKzOXLxOr98M/C1uoqSeV9fm/gKJsqCtk1uDCoc0fWZ8A0v/ta2iczDBY1aTfwf2kmBWfFPeLxtP2UCGhO7+vWhOW9C2q0IrKpV4PFWbW+qVTVfVAmJ5DxLIf32feRerkgsFAU92pbVfIn/s/gRiVfJjH6IkcQEmbsbyofakBSFb3ky7gtDNnNfpHJ31NiC357fDCctTNvrb1O/LpZVKlH/lPYhXWJpAeo8FD7e3Br27es1RAk1WPiWJyNCv4Y73xdq8PpuOKk3XjfyYHjPbNajWJBIMHd2ISvuEQAyL2+U0cK5CLJyPsT/uhJ1mnYUInHHNpwGDEZiZY06tTBMzjagDU/+2GCwhveBJq9km/81Poie8G3btgEQHR3N7du38fPzw8/Pj7t37xbEVO/YsYNKlSoVpJCLiYnh8mXtJJs9e/ZQvnx5LCwscHd3Jzw8nOzsbLKzs3VizF8lLS2NMmXKYG5uzpMnTzh6tHByn4WFBWlpaXrXK0nX20YmNadpHT9WbtmDUpXF9fAHnLp8nbb+wuHSA2cusuzPXSweNwLnIhPgouMSOHf1JqrsbHJz1YScvsDVO/epYUCcp1bDR6z6c6dWw90ITl++Rpsm9QW2B0+dZ/kf21k04TuBBoDc3FyysnPI02hQ56nJys5BrTbszJRKZdRv0JCNG35HpVJy+9YtLpw/R7PmLQS2zZu3ZOeObSQlJZGcnMzO7dto0VLrGDk6OlG5chX+2ryJnJxsYmNiOHXyBLXrCFMu6quLZnX8WLll7yvtcYO2elJGHjhzkaWbd7N47HCcHex0ln3RowNb5k1gw8wxbJg5Bv+aVQls3pDxX/Y1qC5kUin+9erw66a/UKpUhN25y9mLlwlo5i+wzcvLIys7G7VaDRoNWdnZ5ORoHw6fJCYRducuOTm5ZGVn8+f23bxITaNKxQoG1UWTurVY/ed2lKosbty5x5lLV2jdRBh+9FJDrlqNpogGVydH0MChU+fIy8sj+XkKR89eoJx7yfMVXtKwWXtOHdlNXEwkGelp7P7rVxo1F062AqhZrylxMQ+4dO4Y2dlZ7Ny8GlcPH5xcPADwb9GR00f38DQhjqwsFXu3/Y5fbWHqR33Ub9KeM0d3ER8bSWZGGvu2rKZBs+LTTubkZJOTrX34z83NISc7q+ABqF7TDhzevYHnyU9JeZbIod0baNBcOKHvJepMJQm7DlN+/Agkchml6tXAoUML4v4QzneQe7piamsDxsaUCfDHbUAP7s8qTHdnVb0iRiYmmFgq8J0xCuWjBJKOnDGoDl5SvUEQV05v42ncfZSZqZzaswy/hp312qY+f8Lvc/pTp0Vvajf7WLD87tWjKDNeoNFoeBR5gwtH1uNbQ5ia9CUyqTnNaldj+dYQlKosrt2L5OTfN2nXqJbANuTs3yz9ax/BPw7Bxd5OT2lw4nIYVgoZtQyMf36JOlPJkz1H8Bk3HIlchk3dGti3a078n8I2kb3SJnat/HEd0IMHs7Up8TLuR4OREY7d24OREWb2djh2aUvazXCDdBhJJBibm2EkMX7lu0RgF7dhFy4DumFRsRwm1pZ4jx3Co3XaybQZEdGkXr9D+fFfYWxuhkNgS6yqViBhe/EjEq+Sp1SRdOQoHsOHYCyTYlXDD7vmTXmyW5iuUerqgomNNRgbY+vfEMceXXi4XJspJ3phMBfbBnK5S08ud+lJ8vGTPN66nfBxEw3QoCTx0FE8vxmKsUyG9Ud+2LVsSsJO4YOE1O0VDY0b4tizK9HBqwAwdyyL9Ud+GJmaYGxmhuugfpiWsuHFlWuG1YVKRcqZkzj2H4SxVIqiclVsGjTi2WFhXWaG38G2VRuMFQqQSLAL7Ex2UqKOA66oVAXT0nY8P3nMoO2/LzQazVv9/Bsw0rznPalQoQLDhg3j6NGjKJVKvvvuO1q31s4QPnXqFPPnzyc3NxdbW1smT56Mu7s7Fy5cYNq0aVSsWJFbt24hlUqZOXNmQYjIhAkTCA0Nxd7eHl9fXxITE1m0aJFOisK4uDi+/vprVCoVDg4O2NjY4OHhwfDhw4mNjWXYMG1qs/bt29OuXTu6du3KhQsXStQ1a9Ystm/fDiD4XRIpV/WfQC/SM5i6fD0Xw+5gbaHgq15BtG5Uh6t3Ivh2ZjAnftfmAw0a/hNPnz3HzKQw/KONfx1+HPQJUXGPmbJ0HVFxjzE2Nsa1rD39g9rQtI6fzrbyTPRnCHmRls70pWu5eOM21pYWDMnPE37t9j2+m76AYxu0se9dho7mafJzneHc1v71GP3FpwBMWbKG/Sd0h/Z/+moA7ZvpOjnJcv09umlpqSycP5erV69gZWVFv/6f0bRZc27eDOPnCePYul17c9NoNKz9dTWHDmonqQS0bsOAgYMKejWTkpJYtHAet2/dxNrGhm7detC2na7TZv9C2IMI+fmHV2zgYtjd/PbQ5gm/evc+38wM5uRv8wEIHDEhvz0K66JNozqM0TOEPGnZOuxtS+nNE54p1+8YpKalM2vxMv6+FoaVpQWff/oJLZs04satO4yaPIMDm9cBcDXsFt/+NFln3epVKrFw2kSiYmKZ8ssi4hOeYGZmirenB59/+gm+RSYqmaj1jxJp84Sv5tL1m1hZWvBlnx4ENG7A9dvhjJz6C4c3aW9aV27eYcSEGTrr+lX2ZckUbU/T32G3WbZuM7GPEzA3M6NhLT++/qwPUnPdof8HEl+K48Cujezbtp7s7Cxq1W9G/6E/FuTnHjOsJx27DSjoPb917SLrV84hKTGBcuUrM2jEBMo4FI7sbN+0kmMhWwGo+lF9+gz+HoWFFQDZ6tcPIB7avYEDO34jJzuLj+o1p8+X4wp0TPi6G+26DCzoPf/xi/YkJ+oOH89Yvhc7e6f8POELOZ2fJ9y/ZRBd+35dcAyn1xaGMpmWsqbq8mnYNW9AzrMUwsfPI/6vvZRqUJPaO1dyyF67Ttkubag0Zyym1pZk3I/m7k9zdZxsv9/mUqZ1Y0AbP377+6lkJz4TbO/F4TuvrYtzB9dyNmQ1OdkqKtUMoMOnkwryhAf/1AH/9l9QrX5HTuxawoldSzA11w3bGbdMmyFl6/LveHDrLLm5OViVcqB2s17Ua/VpgV0HM2Ec7Iv0DCav+pMLN+9hbSFneM8OtGlQk6t3HzBizsqC1IOdvp3Ck2cpOudp24Y1GTuwR8HvYbOWU9nLjSHd2wm285KzLYSpFyE/T3jwVEo307bJvZ+1ecJL1a9JzW0rOOKkfTAo27kNvjPHFLTJvYlzSTpamGnItnFdKkz+Hnk5D/JUKp6GnODO6OnkFQm7USuFnRo+44dRfsJwnf/uTV5M7G/baHJjHyertUcVqz0OPb/pT7mRgzGWSUnYcZCbQ4vkCV8zA5s61bV5wkdM0psn3MJb//wBbZ7wSZRqUI+clBSi5i3i6b4QrGvWoOqKYM7U0r5joEybAMqNGYmJpSXK6Bgi5y7g+Vn9k1ArTJ9M1pMnevOE5+UK3RsTayt8Z0zCtmF9clJSePDLQp7uCcG6Vg2qrV7KaT9t51KZtgH4jPsBEytLMqMfEjl7Ic/OaO9dcu9yVJ4/E5mbK3lZWaTfCefBnAWk3bwt2J61m/44cYmlJe4/jMHyo9qoU1OJW72c58cOo6haDe8ZvxSkHpRYWeH61TdY1qyNkakJqqgoHi1bTGZ44bnn+u0PGJub83DmVL3bAvjo6Js9RP8TTNqQ81bLm9jn7YS6vk8+CCf8ypUrKPRMziiON3Vu/1sozgl/lxTnhL9rinPC3yXFOeHvmuKc8HdJcU74u+Z1Tvi7oiQn/F2hzwl/15TkhL8r9Dnh75rinPB3jT4n/F1TnBP+rtHnhL9rinPC3zUfghM+cd3bdcInffrf74R/GHcTERERERERERGRfy3/lhCSt8l7d8LDww2LaXuVunXr/ut6wUVERERERERERP53eO9OuIiIiIiIiIiIyL+bPLEjXIDohIuIiIiIiIiIiPyjaEQvXIDohIuIiIiIiIiIiPxPolQqGTNmDLdu3UIikTB69GiaNWsmsLtw4QKff/45Hh4egPa9MFu2bClYHhwczI4d2pSenTt35quvvipx26ITLiIiIiIiIiIi8o/yoc7LXLNmDRYWFhw+fJjo6Gh69+7NoUOH9GbtK1eunN45iZcuXeLAgQPs3avNOd+9e3fq1KlD7dq1X7vtD+JlPSIiIiIiIiIiIv9e8vI0b/XztggJCaFnz54AeHh4UKVKFU6dOvVGZezfv5+goCCkUilSqZSgoCD2799f4npiT/gHhJH4TtcCJOS+bwnkmslLNvofQS35MPLHSyXZ71vCB9NzkWX5/i/fZa1UJRu9A5QS+/ctAXOHD+McMTYxet8SSL+vfN8SPhjkdtL3LeFfS2pqKqmpqYL/rayssLKyMric+Ph4nJ2dC347OjqSkJCg1zY6OprOnTtjYmLCJ598QufO2rcAP378mDp16uiUcenSpRK3/f6v4iIiIiIiIiIiIv9q3nae8N9//50lS5YI/h82bBjDhxe+IbZz587Ex8frLePcuXN6/9dH5cqVOXnyJJaWlsTGxjJgwAAcHBxo0KDBm4vPR3TCRURERERERERE/lHe9mB/v379CnqiX6VoL/jLyZLF4eTkRFxcHLa2toC2V7tu3boCOwsLi4Lvrq6utGzZkitXrtCgQQMcHR11HP3Hjx/j6OhY4j58KCOrIiIiIiIiIiIiIgZhZWWFi4uL4PMmoSgAbdq0YfPmzYA23CQsLAx/f3+B3dOnTwt681NSUjh79iy+vr4FZezcuROVSoVKpWLnzp20bdu2xG2LPeEiIiIiIiIiIiL/KHkfaHqUzz77jB9//JFWrVphbGzM5MmTC3q9Fy5ciL29Pb169eLQoUP88ccfmJiYoFarCQoKomXLloD2Te4BAQG0b98egKCgIJ0Y8eIw0rztIB2R/5gXV468bwmoTT+MSSQp8pKHcf5prJVP3rcEALJN3v8EUSM+jMtEgsTlfUsgW/1hTMB70aTh+5aAyZGSJx69CypLbr1vCdwK/Ox9SwDEiZkfGna1bN63BADqhl543xL4fmnGWy1v7lBhCsH/NsRwFBEREREREREREZF3jBiO8l/Ai/QMpq7YyIWwO9hYKhj6cSBtGgoTwK/fc5h9py6QkPQMa0sLurXyp2/HVgK7K7cj+HLKAgYEtWFIz46GaUhLZ/qy37h4/RY2lhZ82bsrrf3rCew27DpAyImzJCQmY21lSZfWzegT2KZg+eOnSUwN/pVbEVE42Nny/aDe1KlWyeC6SEtLY/6CBVy5cgVrKyv69++v981WGo2GX9eu5eDBgwC0bt2agQMGYGSk7SW6du0aq9esIT4+Hmtra7p37047A+K3AFLT0pm+dC0Xr9/E2tKSIX26EuBfX2C3cWcI+0+c5UliMtZWFnRp3ZzeQYXbePw0iWlL1nArIjK/LvpQu3plg+siNS2d2YuXc/naDaytLBnctxctmzQS2F29cZPfN28jIjIKCwsLNq/SnU3ec/AwnqekYGysfSav4luBXyaNF2tZpQAAIABJREFUM1jDrMUrXtHwMa30aLhy41aBBksLhUADwNY9+9myO4SUF6nYlynN9LEjcXV2MkgHwL6dm9m1dSPZWSrqNmzKoK9GYmqqv9c67Nplfl0+j6TEJ3iXr8TQb8dRxr4sAKGnj7J/1xaioyLw9qnIxJlCra8jZNcm9m1fR1ZWFnUaNKf/kNHF6rh1/SK/r5hDcmIC5cpX4fOvJ2Bnrx0FWrFwEqGnDmJiYlpgv3LTMYwlkmK3bWJjReX5UyjdtD7ZySncn76AhO3CXLUmVpZUmPojdi20bRW7djORvywFQOpclvqnd+vaK+TcmziHh8t/f6O6OLJnPYd2/UZ2loqP6rWk1+fj9NZFbk4OaxaO4eGDWzxLfMy3P6+iQpXCa9yhXb9x/sQekhMfY2FlQ5PWPQgI7P/abaempTMzeBWXroVhbWXBF3160qqxcPTgStgtfvtrB/cio7FUKNiycmHBsieJSfQdMUrHXqnK4qv+n/BxYHuD6sDE2grf6ZOwbVSfnOfPeTB3EU/3hAjtLC3x/mkUpfPPn7iNm4levFxgZ1OnJjU2/kr00pVEzQ82WEOFqT9TqkF9clKeEzVvMU/3CTVILC3xHjsKW39tPcX/8RcPg4UarGvXxG/dGh4uX0X0QsM0uA/tjcunXbCsUp74zXu58dmYYm09v+6H18jBSOQyErYf5OZXE8nLzgFA5u5M9dUzsKlTDWXMY25+PZnkY6EGafiQdEisrPAaOw7rOnXJTUkhdvlSkg8dEtpZWOD+7XfY1NPeY55s30bcmtUFy83KOlLup/EoKlcm+0kC0XN/IdWA1Hjvg7eZ2/vfguiE/xcw59fNmJpIOLB8BveiH/Ht7GX4uDlTzlXXQdFo4Oehn+Lt5kzckySGz1iMQ+lSBDSoVWCTm6tm7rotVPH2eCMNc1dvxNTEhH2r5xMRHcv3Mxbi4+GKl6uzrqFGw4Thgyjn7kJcQiLfTJmLQ+lStGqknWk8YcEKqpQvx9yx3xB69QbjflnKX4tnUMra0iAdwUuXYmpiwh+bNvEgMpKJEyfi5eWFu7u7jl1ISAihoaEEBwdjBIwdN46yDg60b9+e3NxcpkydymcDB9K2bVvuRUTw448/4luhAl5eXiVq+GXVBkxNJOxds5CI6BhGTl+At7sbXm66daFBw4QRgyjn7kpcwlO+mTwXezvbwrqYv1xbF+O+5dyVG4z7JZjNS2ZSytqwSSULVqzB1MSE7b+v5H5UNGOmzKScpzuebq46dlKplHYtm5GV3ZANW3fqLWv6uFHU8qtm0HZfZf6KXzE1kbDj9xXcj4rmxymz8NajQSY1p13LpmRlN2CjHg17Dx1j3+ETzBo/GndXZ+ITnmD5ykz0krj29wV2bd3A+GkLKVXajrlTx7Jl4xo+6T9EYJv6IoW508fxxYjR1KzTkL82rGbBrAlMm7sSAIWlFe0CuxP3KIZb1/9+o/q4cSWUvdvWMWZqMKVsy7Bgxii2b1pJz37DBLZpqSksnDmaz4aNo0Ztf7ZtXMGSOeP4ec6vBTbtO/elex/hPhRHxZk/kZeTw8nKTbCs4ovfxqWk3QonI/yBjl35yaOQyKScrtUaMztbam5dg+pRPPF/7kQVl8Bxr8JYRqmbM43O7+fJvsNvVBe3rp3j4M61fPvzSqxL2bN89rfs3byMzn2+1mvv7etHi/a9WTn3B8EyjUZD/+FTcXb3ITHhEYumDKFU6bLUbtRGT0la5q38DVMTCbvWLuV+1ENGTZuDt4c7nm66IU1ScyntWjShpX8D1m/dpbPMoYwdh/4obI/4J0/pNfQ7mtQvOdbzJeV/HkteTg5n6zfDoqIv1VYtJv3OPTLv67aJ97gfkMikhDZti1lpW/zWrUQV/5iEbYWajExM8P5pFC+u3TB4+wA+48eQl5PDOf/mWPhWoOryxaSH69Hw40gkUikXWrbD1NaW6mtXoIp/zJMdRTSMGUXq9TfTkBX/lPvTl1ImwB9jmXmxdnatGlHuh885H9APVfxTam1dgs/EEYSPmwtAjQ1zeX7+Ghc7Dsa+bRNqbl7EiYoBZCc9/6/S4fH9D2hycrjSvi1yn/JUmDuPzIgIlFFROnbuX3+LsVTKtS5BmJSypeLiJWQlJJC0T/tmRu/JU0i/Gcbd77/Fpn4DfKbN4HqPbuSmpBik410iBj8L+a8JR1m8eDHZ2Ya/qOPIkSPcuFHyRWL79u1EFTno/79lglbvrFmzDLJ9HUpVFscuXuOLHh2QS6X4+XrTuGZVQs5cFNh+2qkVvp5umEgkuDs50LhmNa6HR+rYbNx3lLpVK+Lu5PBGGo5f+JvPPw5CLpNSvaIP/rWqc+Ck8Km/T1BbKni5azU4l8W/dg1uhN8HICY+gfDIGAb1DERqbkazerUo5+bC8fOGOToqlYqzZ8/St29fZDIZVSpXpl7duhw9dkxge+ToUbp06UIZOzvs7Ozo2qULh49oY+7T0tLIzMykefPmGBkZUaF8eVxdXYmJiTGoLk5cuMzgXl3y66I8jWr5ceCkMNdon6B2VPDyyK8LR/zr1CDsbkRBXdyLfMigj4MwNzejWf1alHN34YSBdaFUqTgVeoGBvXsgl0mpVsmXBnVqcej4aYFtxfLeBDRrjKPD232hyUsNn+loqFmshtbNGuPkIDzu8vLy+O3PrQz7rC8ebi4YGRnh7FgWK0vDnfBTx0Jo1qoDru5eWFhY0eXj/pw4IuzpA7gYehJXN0/qN2qOmZk53T4ZyMOo+8TFPgSgml9t6vu3oJStncHbf8mZ4/to0qoTLm7lUFhYEdRjIKeP7dVreyn0OM6uXtRt2BIzM3M69xpMTHQE8Y+i33i7AMZyGfbtW/Fg5mLUmUpSLl4l8eAJHLsLR7vKBDQlOngteUoVqth44jZtx6mXMNUXgFP3Tjw//zeqWP15dovj/IndNGwehJOrNwoLK9p3+5zQE7v12pqYmtKiQx+8K9YoGJF5ldZBA3DzqohEYkJZZw+q127Kg/BrxW5bqVJx8vxFPuvVPf/YrEDD2h9x8MQZgW2l8uVo09QfJwPOj4MnTlO9ki+O9mVKtAUwlskoE9CSqAXBqDOVvPj7KklHT1I2qIPAtnSzxsSs+o08lQpVXDyPt+zAsWuQjo3rwE95fiaUzEjD7llaDVLsWrUkelEweZlKUq9cI/n4SRw6CXvySzdrTOwarYas+HgStu3EsUugjo1L/748PxdKZmS0wRoAEnYe5snuo2Qnv945dOkbROzaraTfvk9uSioR05bi8qn22FT4eGBVozL3Ji0mT5VFwo5DpN28R9kurf+rdBhLpdg2a8ajlSvIUypJv3GdlNOnsWsjHI21adSIxxvWk5eVRXbCYxL37qZMB+05LXV1RVGhAo9Wr0KTlcXzE8fJfPAAWz2jwyIfJv81TviSJUvIyckx2N5Qh3nHjh1ER0e/1TLfJjGPnyKRGOPuWOi8+Li7EPno8WvX02g0XLv7AC+XwgmOjxOT2X0ilEFdDQu7KNAQn4DEWIKbU9mC/7zdXYks4aas0Wi4duceni7aHuLI2HicHMqgkMkKy/FwJepRnEE6HsXFIZFIcHEp7Mny9PLi4cOHAtuHDx/i5elZaOfpWeBklypViqZNmnD48GHUajV37tzh6dOnVK5cciiIvrrw8XAlKvb1+6DRaLh+5x6e+SMHUbFxwrpwL7mclzyKf4zEWKITrlHOw53o2FiD1i/KtHlLCOw7iJETp3E/KtqgdWL1aPD2cCcq9tEbbTsx+RmJyc+Iioml28Ch9Bw8nF83bSEvz/CksrEPo3D39C747e7pzYuUZ6SlvhDYPipiK5XKcCjrzKMYwx2b4ngUE4mbh0/BbzfP8vk6hDf8uJhI3DwLbaVSGfZlnYmLKXxwPhqyjS97t2T8d59y6ZzwYfNVFF7uaHJzyYwsPB/Sb4VjUcFb/wqvzN8zMjLCwle/nWOPTsRv3qV32euIj43ExaNCwW8Xj/KkpiSTnvb/66HTaDTcv3MFJ5dyxdrEvjxPnQuvf//JsVl0uweOn6FNM2HqsuKQe7qjUeeijH6lTe6Go/ApRruRTqOgKF/YJuZOjjh2CyJ6yYo30i33eKmhsJMh/e49FN6GaZD76Goo2zWI6KVvpuFNsKzsQ+qNuwW/U2+EIy1bBlNbGywqeaOMjEWdnvHK8rtYVirmGP9AdUjd3NCo1aheuV5n3I9AVtxI7KttghHyfDuZlxdZ8XHkZWYWLM28H4HMs+QR3feBJk/zVj//Bv4rnPBJkyYB8PHHH9OqVSsqVaqEWq0GoF27dgXLb9y4wccff8zp06c5duwYK1euJDAwkJ079Q/Bb9u2jZs3bzJ16lQCAwM5d+4carWaWbNm0aFDBzp06MCsWbNQq9V6y0xMTKRv37506dKF9u3bM3v27Le+75lZWShkuhlLLGQyMpVZr11v1dZ95Gk0dGxaGLc99/ctfJnfo/4mKFVZKORFNMhlZCpf/8rq1X/tQqPR0KF5w/xyVFjIZTo2hpTzEpVSiVyumylEoVCgVApn4qtUKhQKhcDuZTKgJk2bsumPP+gUGMjIH36gX79+lClTcu+WvrpQyOVkql6/D2s270STp6F9c228Z6YyS1AXCrnc4LpQKlXIi9alwvD1X+Wn74bx56olbF4dTI2qlfjh5+mkpZc8i12pVKEoug8Kud72eB2JSckAXLoaxtpFc1gwdTxHT59l35HjBpeRpVIif6W95QqLfI2ZAltVEduX9vps3xStjsIefJlc+12lV0cmcrlub79cXqijdYeezFm2leB1B+j6yResXDiZe3euF7ttiUJObpF2y01LQ6IQZhBIPn4Wj+GDkCjkyDxccerVGYlMJrCzqfsRZmVK83SPMFa1JLJUmQX7D6/Wxf8vQ8Lev5aRp9FQv3lgsTZKlZ5j8w2uNfq4cSec5y9e0LS+8CUexSGRy/S0SToShTDj0bPT53D/YqC2TdxccewWhOSVa7/P+NEFPepvgkQu13EWAXLT0/UeF89On8N18AAkcjlSN1fKdgnU0eA9dlRBj/o/hUQhJ/dFeqHWF2kAmFgqMLFQkJOapmOf+yINieXbz5LxT+qQyOSoM3TbRJ2ejkQuPC5enA/Fqe+nGMvlmLu4UKZDR4zz7+ESmbBtiyvnQyBPo3mrn38D/xUx4RMnTmTTpk38+eefKBQKevXqRVhYGE5OTkilUv7+WzuEHxoaSr169fD396d58+ZUqVKFPn36FFtu165d2blzJwMHDiyY3Ldp0ybu3LnD9u3bARg8eDCbN2/mk08+EZSZlZXF8uXLUSgU5OTk8Nlnn3Hq1CkaN2781vZdbm5ORpEbR4ZSifw1sWx/HTzBvtMXWTnxW8xMtZO6Tv8dRoYyi1b1a76xBpnUnIzMohpUyGXFO/NbQo4ScjKU5VNGF2iQSaVkFHHQtPti2EOBVCYjM1PXmcnMzESmx3mQSqU6ti/tjIyMiI2NZebMmYz/6Sdq1KhBfHw8E3/+mdK2tiXm9dRfF8rXPths3X+EkJPnWDZ1TEFdyGXCds18g7qQyaRkFrkRZmRmGrz+q1St6FvwvXe3zhw4doqw23dpUOf1x4pMJiWjiIbMTKXe9ngdZubaiXq9unTE0kKBpYWCTq1bcv7yNToGtNC7zunjh1gVPAeAipWrYS6VocwsvBm9/C6TCW9GUqmMzEzdG5cyM0OvbUmcPXGAtctmAFChkl++jsIb98vvUr065CiLOKRKZaEOj3KF7eJXqyENmrTmcuhxylesrleLOiMTEwtdJ8DEwkJwswe4O246vtPH0vD8fnKepZCwYz9lO7cT2Dn1DOTp3sMGOX4XTu1j08qpAHj7foS5VI5S+Upd5O+rVPafO0zHQ/7k/Mm9jJyyttjJrpB/rSl6bL7B+aWPkOOnaVKvzhuVoc5UFtMmwoeyiCkz8ZnwI3UP7yE35QVP9obg0EE7alm6eRNMFAqe7j/4xrrVmZlIimpQKPQeF/enz8J73I/UObCbnBcveLr/APbttHH3pZs2RqJQkBjy5g9k/8feeYdFcX1/+IVdYJeODaVXey+ICmJFTYzdGI0lJlETYzfGlmhsUWPvXRM1UWNX7L33BnakV1GUvoVd9vfHKrjsIuvva9Qk8z4Pz8PMnLnz2Xvvzp65c+65b6Q3OwexbcHD28v/VZnZqLKyERcKUxPbWqPOfLup7/5uHWpZjt5DkMjKCnWOfr+InjcXjxEjqfHXNlTp6aQeOUzJlsFvXI7Ah8k/wgkvTIMGDTh//jxOTk40a9aMS5cukZyczPnz5/n2W+MnMRniwoULdOzYEXNz7Q2+U6dOHD16lB49eujZqtVqfv31V27cuIFGo+Hp06fcv3//rTrhbuXKoFbnEZuUgls5bcziw9gEnTCTV9lz4jzr9xxhxYThOJZ0yN9/5fYD7kfF0vqbMQBk58gxNTUhIi6B2d9/83oNTmVR56mJS3qM64uwmPDoOLxcDWeu2HvsDBt2HmDZlNGUKVkif7+XqxOJj5+QLZPlh2E8io6jZYB+lhVDuDg7o1arSUhIwNn5RVhHZKTepEwAd3d3IqOiqFBB+zo8MioKNzc3AKJjYnB2dqZOHa2T6eLiQr169bh69WqxTnh+XSQm4/oiJOVRdFx+mElhQo6dZsPO/SydMkanLjxdnUl8nKJTF+HRcQQbyDhjsC6cyqHOUxOfmISLk7YvRETF4OHqWsyZxWNiAsYsH+BqQMOjqBg8Xd8sl7ebsxNmYnF+5pp8Ea8hsGkwgU2D87cXzvqZmKhHNAjUOu0xUY+wsy+Bja2d3rku7p6cOnYwf1sul/E4OQEXN0892+Jo1KQ1jZoUTA5cOudHYqPCqR+gzUoUGx3+Qod+rmBnNy/OHt+noyMlKR5nt6JfSb+uXbIjYzARi7H0dCMnSht6YF2lAlkv5mS8iiotg9sDx+Rv+4wbSsaNMB0bU4kFZT4J5lZfwxMpC1O/8cfUb1wQZ7xm/hjiox9St6E2TjY++iG29iWxtvn/5U0+d2wXh3auZeSUtTiUfP2cFleD39PYN+6bL1EolJw8f4lpo4e/0Xk5UTGYiMRI3d2Qxbxok4rlyQ6P0LNVpWdwb+S4/G2vEYPJCL0NgEMDP2yqVabh+WMAiG2s0ajzsCrvy+1vh71eQ7S+BquK5cl+ZFjD/R8KNHgOG0xmmFaDfYP62FStTIPT2rk1IhtrUOdh5evDnUFvVi+vI/NOOLbVK5C0TTunw7Z6ReTJT8h9lkbW3UdYerkisrbKHwG2qV6RxM2G5118qDrksbGYiERYuLiiiNeGpFj6+iKLjNSzVWdkEPHzxPxtl2++JevuXQBkkZFYODlhammZH5Ji6eNL6pE3f1h7F/xbQkjeJv+IcJTC+Pv7c+HCBS5evIi/vz/+/v6cOHGCe/fuUbt27XemY926dWRkZLB161b27t1LixYtUCheHybypkglFjT1q8nKrSHI5ApuPYjg9NVQ2gToO4sHz15m6ZY9LBo3GGdH3UllAz5ty9a5E9g4YywbZ4wlsE412jdrxE/f9DJKQxO/2qzavEur4X44Z67epHWQflq+Q6cvsnzTDhZOGIGzo254h5tTWXw93Fjz1x4UylxOXrrOo5h4mvobNzovkUho2LAhGzZuRC6Xc+fOHS5cvEjzZs30bJs3a8bOnTt5+vQpqamp7Nixg5YvVrby9vYmMTGRmzdvotFoSExK4vLly3h4Fu+ESSUWBNWvk18XoffDOXPlBq2DGhqoiwss/3M7CyZ+j3NZ3UlfL+ti7V+7UShzOXXpGhExcTQxsi6kEgmB/n6s/fMvZHI5Yffuc+7yVYINxKvm5eWhUCq1IVwaDQqlktxcFaBNwRZ27z65uSoUSiWbd+whPSOTqpUq6JVjSENjfz/W/Ln1hYYHxWpQqVVoNOhokFhY0DSgAZt27CEnR0bK01RCDh2jYb1aRtUFQONmrTl+eB/xsVFkZ2WyY8vvNGlheO6DX4PGxMVEcuncSZRKBds3rcPNwxtnV+3DXJ5ajVKpIE+tJk+jQalUoFKpjNIR0PRjTh3dQ0JsJNlZmez+ay2BzfQn4QHU9W9CfGwEV84fR6lUsGvLalw9fHFy8QDg8rljyGU55OXlEXbjIudPHqS2X9EP+Hk5MlL2H8V79CBMLaXY1atF6dZNSdq6V89W6u6KmYMdmJpSslkAzj27EDlPN863zEfNUaVl8NzAJHBj8A/6hPPHd5EYF0FOdgYHtq+iQZN2Rdrn5irJVWrvn2pVLrlKRf5Dx6XT+9i9aRFDJyyntGPxjrS2b9ZjzaZtyORyQu894Ozla7Rqop8+M79vqlRo0P1+vOT0pSvYWFlRu5rx6VQB8mQynhw+huewgZhKpdjVrkmpFk1I3qXvrEncXBDba9ukRONGlOvWmeglqwCImr+ESy3bcbXdp1xt9ylPj50i6a/t3B8zwQgNcp4ePYbH4G8xlUqwrVWTUs2a8HjPPj1biesrGgIbUe7TTsQs16bDi16whMtt2nO1UzeudupG6olTJG3bwYPxE/XKMYSJSISphTkmItNX/tdPt5mwcTcufbtgXckbsZ0NPuO+JX79TgCyw6PJuHWP8j99h6mFOY7tW2BbrQLJO4x3Oj8EHXlyOc9PnsSlX39MJRKsq1fHIbAxTw/qTya3cHZGbGsLpqbY+TegTPsOJP6mzdgjj4sjJzwcl6++xsTcHIegICx9fHh2wvhQvneJEBOuzz9mxczatWtz4MABHB0dUSqVBAQE4ODgQEhICLdv32bkyJG4u7uzbt06AKZOnUrJkiWLHRn/5ptv+Oijj2jXTvvj8Oeff3LkyBFWrtSmK+vfvz/BwcF0795dr8wZM2aQl5fHuHHjePz4MR07dqR79+4MHjyYRYsWkZOTw+jRo43+jEWtmJmelc2UFRu5HHYfO2srvuuuzRN+4/4jhs1Ywqnf5gHQfsgEUp49x1xc8IKjdYAfY7/urlfmpGXrKVPCQS9PeFErZqa/zI0dehc7G2u+fZEn/Obdh4z4ZT7HN2pzDHcaOJqU1OeYmxVoaBXoz+gBvQFtbuwpi9dy51EkZV/kxjaUJ7yoFTMzMzOZN28e12/cwNbWlr4v8oTfvn2bnyZMYOeLMCKNRsPatWs5+CJPeOtWrfjyyy/zR1tPnz7Nn5s2kZKSgqWlJU2bNqXvF1/oZGYoasXMjMwspi1Zy5XQO9q66NmF4MAG3Lz7kJHT5nLsD21e3c7fjtKvi8YN+GFAn/y6mLp4NXfCIylbqmSRecKLWjFTm6N7GdduhmFrY03/3j1oERRA6J17/DB5Oge3rAfgRtgdhv84WefcGlUrs2DaRKJi45gyeyGJyY8xNzfDx9OD/r17ULHQxLGiVszUaljO1XwN3WkZFMCtO/cYPXkGB7f8nq9h2I9TdM6tWbUSC6Zpf8Czc3KYvWQVF67ewNrKkrbBzenTrZPu6DivXzEzZOdm9mz/A6VCgV+jJvR7JU/4yIE96dC1d/7oeejNK6xbPo8nKcn4lq/Mt8PHU8ZR2+dOHt3Psvm/6JQd1LwNA4drc6cXt2Lmgd1/ELJ9A0qlgnoNmtJ34Jh8HWMGdeOTLn3zR89v37zM+pWzePokGe/yVeg/ZAKlHbVvmKaM7Udc9CM0GijtWI5POn9Bg8YFo/+GVswU29tSZf4USgY1QPksnUfT5pG8Yz/29WtTa9Py/NSDju1aUWHKaMS2NuRExhA+ZS6pJ3Uz/NTavIKMG2FEzCw6T3pxK2Ye3buBQ7vWkatUUMu/OT36/5hfF5OGdaJ1p6/yR8/HfduGZ090J5xPXbqPUmWcGT/wI56npmBmVpAz3S/wYz4f8CNgeMXMjMwspi9eydVbt7G1seabXto84bfu3mfUlF/zUw/euH2XIT9N0zm3ZpVKLJr6Y/72iEkzqOzrzdc9uhb5WYtaMVNsZ0vF6ZMo0agBuWlpRMxeQMreA9jVrUX11Us5U1M7mFG6TTC+40dp2yQ6hshfF/DsrH7WJYCKMyejSH5sME+4oRUztXnCJ+HQ0J/ctDSi5i4kZd8B7OrUotqKJZytqx1EKN06GO+x3yO2sUEWHUvknPk8P2c493WFXyajePzYYJ5wQytm+v40iPITBuvsezh5EXG/bScodB+nqn+MPE7b/p7DvsD7+36YSiUk7zzE7YGF8nOvmY69Xw1tfu4hk94oP/e71lHUipnaPOE/Yufnhyo9nbhlS0g9fBibGjWpMHceV5trQ2RLNG+O+9DhiGxskMfGErd0MemXCla/NC9bDu+ffsK6ShUUyY+JnjPLYJ7wD2HFzO9mv920iUu+/zBWI/1f+Mc44YsXL2bv3r1IJBI2bNjA8OHDEYlErFy5EpVKRf369enfvz8DBgwAtJM0x44di1gspm/fvnTo0MFguSdOnGDGjBlIJBJGjx5N/fr1mTVrFmfPalNZBQQEMGrUKEQikV6Z9erVY+jQocjlchwdHbG3t8fDw+OtO+HvEmHZ+gKEZesLEJatL0BYtr4AYdn6AoRl6wsQlq0vQFi2voBvZ71dJ3zZqA+jbv8X/jFO+H8BwQkvQHDCCxCc8AIEJ7wAwQkvQHDCCxCc8A8LwQkv4JuZxi1kZCzLRzsUb/SB84+MCRcQEBAQEBAQEBD4J/OPzI7yppw6dYq5c+fq7R8xYgRBQUHvQZGAgICAgICAwH8HIfBCn/+EEx4UFCQ42wICAgICAgIC74m8f0lGk7eJEI4iICAgICAgICAg8I75T4yECwgICAgICAgIvD+EcBR9BCdcQEBAQEBAQEDgb+XfssDO20Rwwj8gNKbvvznyTPRXDnsfaIpZtvxdYKLJe98SPhiEuijAxOTD+CHJU71/Hbl5H8b9wtQk931LQJP7/tsDQPimfliYit7/b5nAh8v79/oEBAQEBAQEBAT+1Qgj4foITriAgICAgICAgMCxUY33AAAgAElEQVTfSp4QE66HkB1FQEBAQEBAQEBA4B0jjIQLCAgICAgICAj8rQjhKPoITriAgICAgICAgMDfipCiUB8hHEVAQEBAQEBAQEDgHSOMhP8DSM/KZtry9VwKvYu9jTUDu3ekVYCfnt2GPYfYf+oiyU9TsbOxpnNwEL3atQLgWXoGc3/7ixv3HiKTK/B2dWZo765U9fU0SkNGZhbTl67l8q3b2NnY8E3PLgQHNtCzuxZ2j3Vbd/MwKgYbK0u2L5+jczzsfjgL1v1JdHwSTmVKMbJ/b2pUKm90XWRmZjJ/3jyuX7+OrZ0dX3zxBU2bNtWz02g0rFu7lkOHDgHQqlUr+n75JSYmJty+fZsJP/2kYy+Xyxk3fjwBAQHFakjPzOKXZb9x+dYd7G2s+ebzzrQK9Nez27j7IAdOniP5SSp2tjZ0atWUnu1b5x9fsWknp6/cICY+iS86t+Xrbu2NrgfQtsmvi5Zz9WYodrY29OvVnRZB+vpvhN7m9y3bCY+Mwtrami2rFusc79ZvEM/T0jA11T6TV61YgdmTxhutYebilVy5GYadrQ39e3ajZVAjPbvrYXf4fctOHkZGYWNlxV+rFurZbN17gK17D5KWnkGZ0iWZPnYkrs7ljNIBsG/XFnZv+wOlQk79Rk34+rvvMTMzN2gbdvMqa5fP5emTx/iUr8zA4eMpXaYsABfOHGP/7q1ER4Xj41uJiTMWGyyjKA7s3kTI9vUoFHL8Gjaj78DRReq4fesKvy+fReqTZLwrVGHA0AmUKqP7mbMy0xn17aeUc3ZjwsxVr722mb0dVRZOpmSThuQ+SyN8ynyStu/TsxPb2lBx+lhKNdf2l7i1m4n4dSkAEudyNDq/R9fe2pL7P/1KzNLfja4HgOMh6zm6ey25Sjk167fk034/GawLlSqX3xeMJjbyDs+eJDJk4lp8q9QzaDdjVGcUsmymLD/22mt/KPcssZ0tlX6dRInAhuQ+e07Erwt5vGe/vp2tDb4TR1PyxXc4YeMWouYvyz/e4OwBzEuVRKPWJiHMuHaTm72/MVpDxV8mUSKgAbnPnxMxZyEpew/o29nY4PPjDwUa/thC9KLl+cf9T+zX1XDjFrf6GqfBfeDnuPTuhE3V8iRuCSH0q7FF2noO7YPX9/0QWUpJ3nGI299NJE+pTUMpdXemxurp2PtVRxabxO2hk0k9fsEoDR+SDpGNLZ5jx2Fbrz6q9DTiVyzj2ZHDenYmZma4DR2OQ+MmmIhFZIWFET1rJrlPnwAgcffAfcT3WFaoiCrtOXFLF5N2+pTROt4lwrL1+ghO+D+AWWs2YSYWcWDlLB5GxzNixiJ83V3wcnXSNdTAxO/64uPuTMLjJwyZtgDHkiUIblQPmVxBZW93hvXuioOdDXuOn2XEzEXsWvwLlhJJsRrmrNqAWCxm75qFhEfHMuqXefi4u+Hl5qxjJ5VY0LZZIAqlP+t37NU5lpGZxQ/T5zNqQB+C6tfl6NmLjJ4+n7+WzsLW2sqouli6ZAliMzP+3LSJyIgIJk6ciJeXF+7u7jp2Bw4c4MKFCyxZsgRMTBg/bhyOZcvy8ccfU7VqVXbs3JlvGxoayqSff6Zu3bpGaZiz+g/MxGL2rZ5HeHQcI6cvwNfDFS9X3bpAo2HC4K/xdnchIfkJw6bMwbGkAy0D6gPgUq4Mg3p2Zefhk0ZdtzDzV6zBTCxmx+8reRQVzdgpM/D2dMfTzVXHTiKR8FGLpiiUjdi4bZfBsn4Z/wN1a1Z/Yw3zVq5DLBaz67dlPIqKZvTUWfh4uuPp5qKrwcKCj5oH0TywARu37dYrJ+TICfYdPcmvP43C3cWZxOQUbIzsEwA3r11i97aN/DRtAQ4lSzFn6ji2/rGGHl98q2ebkZ7GnF/GM2DIaOr4NeKvjauZP3MC0+asBMDKxpaP2nclIT6WO7euvVF9hF6/yN5tvzNu2lIcSpRi3i+j2f7nKj7r852ebWZGGgumj+brQeOp5RfAtj9WsOjX8UyavVbHbvPvS3By8UBjRK72Sr/+SJ4yl5OVgrCpWpHam5eScfs+2Q8idOwqThuNSCrhdK1gzEuVoN7ONcjiE0n8cxfyhCSOuRc4wFI3ZwKvHuDx3iNvVBf3bp7j6O41DJ6wBjuH0qyaPYz9fy2h/efDDdp7VaxFk497snbuyCLLPLZnHda2Dihk2cVe/0O5Z1WYMp683FzO1m2CdeWK1Fi7mKx7D8gO120T359GIZJIOB/QGvNSJaj1xyrkCYkkbS34voR+NZjn5y4Zdd1XKf/zOPJycznXoCnWlSpSfdUisu49JOeRrgaf8aMQSSVcaNIG85IlqLl+JfLEJJK3F2gIGzCE5+ffXIMiMYVHvyyldHAgplKLIu1KtQzAe1R/Lgb3QZ6YQt1ti/GdOIQH47UPR7U2zuH5xZtc/qQfZdoEUWfLQk5WCkb59Pk/Sof7yO/R5Kq42e4jLH3L4/vrHHIehSOPitKxc+zaDeuq1bjdpyfq7Cw8fhiD+/CRPBo/BkQifGf8SsqunTwYPgSbmrXwnTmbO1/2RhEXZ5SOd4kQE67PPyIcZdGiRSiVSqPtjx49Smho6N+oyDDx8fHUr1//rZYpkys4cek6Az5tj6VEQs2KPgTWrcGBMxf1bHu1b0VFLzfEIhHuTmVpXLcGoQ8eAeDsWJoebVtSysEOkakpHVs0JlelJibxsVEaTl66Sr/unbCUSqhRqTwBdWty6NQ5PdvKvl60btIIJ8fSesfCHjyihL0dzRr6IRKZ0iqoIfa2Npy6eNWoupDL5Zw7d45evXohlUqpUrUq9f39OX5Mf0Ts2NGjdOrUiVKlS1OqVCk6de7M0SOGnYijR4/SKCAAiREPI9r2uEb/zzq8qAtfAuvW4OAp/RGQnh3aUMHLXdsezmUJrFcrvz0APm7SiAa1q2EpLf66+jrknL5wiS8//xRLqYTqlSvS0K8uh0+c0bOtVN6H4KaNKedY5o2vU5yGUxcu83WPrvkaGtWrw6GT+hoql/ehVdNAnMrqa8jLy2Pd5u0M/rIXHq4umJiY4FzOEVsba6O1nD5+gKYt2+Lq7oW1tS2dPvuCk0f1R/oALl84haubJw0CmmFubkGXHl8SE/WIhLgYAKrXrEeDwOY4lChl9PVfcub4PoJatsPFzQsra1s6dPuSM8dCDNpeOX8CFzcv6gc0x9zcgk7d+xEb/YjE+Oh8m4f3QomPiaBxi7bFXltkKcXxk5Y8mr4IdXYOaZeu8+TgCZy6tdOzLd2qCVGL1pInkyOPSyT+jx249OhksFynbu14fv4a8rhE4yrhBZdO7ca/aSfKufpgaW1H684DuHRS/wEMQCw2o+nHvfCuWDv/jUxhnqbEc+VMCC07fF3stT+Ue5apVErp1i2InLMEdY6M9Ks3eHr0JGU76bdnyeZBxKxYR55cjjw+kcQtOynXtaNR1ylWQ3ALoua/0HDtBk+PnaJsBwMamjYmdtVvWg0JiSRt3Um5zh3+Zw0AybuO8HjPMZSpaa+1c+nVgbh128i6+whVWgbh05bi0ltbD1a+HtjWqsLDSYvIkytI3nmYzNsPKdup1T9Kh6lEgkNQU+JXryBPJiMr9BZpZ89QqlUbPVuLck6kX7qE6vkzNEolz44dReKpfYMtdXPHrGQpHm/ZBHl5ZF6/RlZYqMFyBD5M/hFO+OLFi8nNNX5FtPflhP8dxCY9RiQyxc3JMX+fr7sLkcX8IGo0Gm7ef6Q/Wv6Ch9FxqFQqXA04RYWJS0xGZCrCzals/j4fDzei4hKM/BSv0wmRRpaTEB+PSCTCxaVglNXL05OYmBg925iYGDy9vPK3PT09iY2N1bOTy+WcO3uWFi1aGKUh1lBduLsa1x73HuLp4vxaO2OJT0xCZCrC1bmgfb093In+f45+TJu7mPa9vub7idN4FBVt1Dkv+8WrISPenm5Ex8a/0bWfpD7jSeozImPj6PzVID7tP5S1m7aRl2f82n9xMVG4e/rkb7t7+pCe9ozMjHQ92/hCthKJFMeyzsTHRunZvikJsZG4e/q+osO3aB1xkbh5FNgW6IgEIE+t5vcVs+kz4HtMjFhB1tLbHY1KRU5Ewfch8/YDrCv4GLR/tUwTExOsKxm2c+rWjoQthp3n15EUH4GzR4X8bWf3CmSmp5Kd+Xrnpyi2rZ3OJ92HYm5e/EPrh3LPsvRyR6NWIYt6pU3uPcTK13Bd82o7m5hgVajtqsyfQcC1k9RcvxxrI0NiLD1faIgu0JB1/wFWvt7GaSivq6HynOk0unSCGuuWY1XR+LAcY7Gp4ktG6P387YzQB0jKlsashD3WlX2QRcahzsp+5fh9bCoXUZ8fqA6JqxsatVpntFoWEY7U00vP9knIHqyrVcesZClMLSwoGdyK9IuvCXsxMUHqpV/Oh4BGo3mrf/8GPngnfNKkSQB89tlntGzZksqVK6NWqwH46KOP8o+Hhoby2WefcebMGY4fP87KlStp3749u3YZfv0O0KtXL6ZNm0aXLl1o2bIlc+fOzT+WkpLCkCFD6NKlC5988gnLlxfExc2cOZPOnTvTrl07+vTpQ0KC/g1ZqVQybNgwZsyY8T91lhy5AiupVGeftaWUHLniteet2rqXvDwNbZs01DuWlSPj58Vr+apzW6wtpQbOLqxBjpWl7g+fVoPciE9QQNUKPjx99pwjZy6iUqnYf+IsCY9TUCiMe8shk8uxtLTU2WdlZYVMJtOzlcvlWFlZ6dkVbotz585ha2tLtWrVjNSgMFwXstfXxeq/dqPRaGjbTD9e+v+DTCbHslDbWVtZFqvDED+OGMTmVYvZsnoJtapVZtTPv5CZVfzrfplMjlVhDZZvriEl9RkAV26G8duCmSyY8iNHz5xn39GTRpehkMuwfKW9La2sX2jM0bOVF7J9aW/I9k2Ry2VILQtG8F/+LzcQPqGQyZBa6Y72Sy2tkb/QcSjkL3zKV8HTp5JR1xZZWaLK1L2OKiMLsbWlnu3T42fxHPoVImtLLD3dcO7REZFU/15g718b89KleLxHP1a1OJTyHKProjhuXT5GXp6aGn7NjbL/UO5ZIktLVIW+S+rMLEQG2uTZqXO4f/slIitLpO6uOH3aAdErb+fuDh3L+YDWnG/UmucXr1Bj/XLEtjZGaJDqaVBlZiGyMqDhzHncB7zQ4OZKuS4dEL3ypu7eyHFcaNKGC0FteH7xMjXWLkNsU7yGN0FkZYkqPatAa3omAGIbK8TWVuRmZOp+lvRMRDbGh659CDpMpVLysgu1SVY2ppb6baKIj0OZ8piau0OofegYEncPEtdpQ9bksTHkpj2nbI+emIhE2Nbzw6ZmLUwt3vzt6rtAk5f3Vv/+DXzwTvjEiRMB2Lx5M0eOHKFGjRqEhYWRkpKCRCLh2jVtzOaFCxfw9/cnMDCQZs2a0b9/f3bv3k2HDq9/lRYREcHmzZvZtWsXJ06c4MSJEwCMHj2aXr16sW3bNrZv387p06c5d077KrNfv35s376dPXv20LZtW2bPnq1TZlpaGl999RW1a9dmzJgxRo1iFYWlxILsQk5mdo4cS0nRsWxbD55g/+mLzB0zCHMzM51jcqWS739dQlVfL77oaNwrK0uJhOwc3R+vbJnMqFjyV7GzsWbGmKFs3nuItl8N5dKNMOpWr0zpkg5GnS+VSMjJ0XWUcnJykBpwHiSFbF/aFW6LY0eP0rx5c6PbSCqxMFAX8teGlGw9cIwDpy4wZ9xQvfb4/yKVSsjJKdwvcv5foS3VKlXEwsIciYUFn3fpiLWVFWF37xd7nlQqIVtPg+yNNViYayfq9ej4CTbWVpRzLE274OZcvHazyHPOnDhM7y4t6d2lJdMnjsRCIkWWU/Cj9vJ/qVT/R00ikZKTo/sDKMvJNmhbHOdOHuSrT5vw1adN+PXnYUgkUmQyfR0Sqf6Ps4VUVzOATJaNRGrJ89QnHN67ha69jJv0BqDOzkFcyAkQ2VihytJ/uLg/ZjpqmYLAyweotXERSTsOIE9M1rNz/qw9j0OOoM4u/gHlypkQRvbyY2QvP5b+8g3mEkvkOQVOzEvn21BdvA6FPIfdG+fSpW/RE+gK86Hcs9Q5OYgLxY6LrK1QG2iThz/PIE+uwP9kCNVWLeDxngMokgvCBdOv3SRPoSBPLidm6RpUGZnY1atthAaZngaxtbXBNg2fMgO1XE79I3uptnwBj0MKabheoCF2xVqjNbwJ6uwcxLYFD28v/1dlZqPKykZcKExNbGuNOvPNH+zep448mQzTQgMBIisr8nL028R9xChMzc243iaYay2b8vzUScrPmQeARq3m0djR2DVoSM09+yn7WQ+eHz+G8knKG33Wd0Venuat/v0b+MdNzGzQoAHnz5/HycmJZs2acenSJZKTkzl//jzffqs/Cas4OnTogFgsRiwW89FHH3Hx4kXq16/P5cuXefbsWb5ddnY2ERERNGrUiNOnT/Pnn3+Sk5ODSqXSKU+pVNKjRw8GDx5Mmzb/e1yWWzlH1Oo8YpMe41ZOG5ISHhNfZJjJnhPn+H33QVb8/D2OhX4olLm5/DBrGWVKODCm3+dGa3B1Kos6T01cYjKuL17vPoqOw7PwREQjqFWlImt+1T5YqdRqPh04iu6ftC7mLC3OLi6o1WoSEhJwdtZeOzIqSm9SJoC7uztRkZFUqKB9HR4VGYmbm5uOzZMnTwgNDWXw4MFG63d7WRdJj3F92R7RcUW2x95jZ9iw8wDLpoymTMkSRl+nOFycyqHOUxOfmISLkzYcJCIqBg9X12LOLB4TE+PyuRb0iyRcX2qIjsGj0KTM4nBzLoeZWAy6b8FfS2DTYAKbBudvL5z1MzFRj2gQqB0pjYl6hJ19CWxs7fTOdXH35NSxg/nbcrmMx8kJuLgZlynoVRo1aU2jJgX9d8nsn4iNCsc/QBveFBsVXrQOVy/OHC/IkiGXy0hJisfFzYuI8LukPU9l9HefAaBUKlAqFXzXuw2L1oVgKhLplZcTEYOJWIyllxs5kdrQK5uqFch6ZR7CS3LT0gn7ZnT+tu+PQ0m/flvHxlRigWP7VtzsPdSouqgX2JZ6gQVxxr8t+IGEmIfUbqitn/iYB9jYlcTKxt6o8l7yJDmW1CeJzJ/QBwC1KhdZThbj+jVh5LQ/KFlG/z70odyzciJjMBGJkXq4IYvWtol1pQpkh+u3iSo9g7vDCh40vEYNIePWbT27fDQaowYPcqJeaHB3QxbzQkPF8noTQ19quDdyXIGGEYPJCH2NBt6+I5R5Jxzb6hVI2qad02FbvSLy5CfkPksj6+4jLL1cXzzIaB1em+oVSdxseN7Fh6pDHheLiUiEhYsrinhtSIqljw+yqEg9W6mvLwkrl6POzAAgZftWXPoNQGxnhyo9HVnEIx4MHphvX2nZSp4e1M++I/Bh8sGPhBfG39+fCxcucPHiRfz9/fH39+fEiRPcu3eP2rXfzhN5Xl4eJiYmbNu2jd27d7N7926OHj1K7969SUhIYPr06cyZM4eQkBB++eUXnUmjZmZm1KhRg+PHj+eHzfwvSCUWNPGrxcq/9iKTK7h1/xGnr96kjYGUeAfPXGLZpl0sGj8M50KTjFQqNWPnrsDC3IwJ331R5OSnojQE1a/D6s07kckVhN4P58yVG7QykIouLy8PhVKJSq1GowGFUklubsGDysPIGFQqFdk5Mhb/vpkyJUtQv5ZxoSASiYSGDRuyccMG5HI5d+7c4eKFCzRrrv+Kulnz5uzcuZOnT5+SmprKjh07aNGypY7N8WPHqFS5MuWcDDvQRdVFE7/arNq860V7hHPm6k1aB+mnPjt0+iLLN+1g4YQReu0BoFKpUChzydNoUOepUShzUauNe8UmlUgI9Pdj7Z9/IZPLCbt3n3OXrxLcNFDP9mWbqNVq0Gh02uTxk6eE3btPbq4KhVLJ5h17SM/IpGqlCnrlGNLQ2L8eazdte6HhAWcvX6NVk6I1qFRqNOj2C4mFBc0C/Nm0M4QcmYyUp6nsPXycBnVrGVUXAI2bteb44X3Ex0aRnZXJji2/06SF4YdgvwaNiYuJ5NK5kyiVCrZvWoebhzfOrtqHuTy1GqVSQZ5aTZ5Gg1Kp0HvYLoqAph9x6sgeEmIjyc7KZPdfawlsbnhSZd0GTYiPjeDy+eMolQp2bV6Dq4cPTi4e1KjTgHmrdzFtwUamLdhI5x798fCqwLQFGw064KAd8XwccgSfMYMRWUqx96tFmTbNSNyyR89W6uGKmYMdmJpSqnkALr27EjFnuY6N48ctUKVl8OzMm2fCAPALaseF4ztIio8gJzuDQ9tXUr9J0Wk4c3OV5Cq1YXYqVS65SgUajYZyrj5MWXaEMbO2MWbWNrp/Mwkb+5KMmbUNh1JlDZb1odyz8mQynhw6iteI7zCVSrGrU5PSLZuQvEPfWZO6uSC217ZJiSYBOHXvTPQibcYeC6ey2NWpiYmZGFMLc9z6f4GZgz1pV28Yp+HwMTyHDdRqqF2TUi2akLxLX4PkVQ2NG1GuW2eil2jTYlqUK4td7RcazM1x/boPZg72pF8v+o3Vq5iIRJhamGMiMn3lf/2+nLBxNy59u2BdyRuxnQ0+474lfr02m1V2eDQZt+5R/qfvMLUwx7F9C2yrVSB5xyGjNHwoOvLkcp6fOonz1/0wlUiwrlYd+4DGPD2kP5k8+949Srb+CJGVFSYiEWU6dkb5JAVVunaeidTbBxNzc0wtLCjbvQdmJUvxdL9+WtIPASEmXB8TzT/gk9SuXZsDBw7g6OiIUqkkICAABwcHQkJCuH37NiNHjsTd3Z1169YBMHXqVEqWLFnsyHivXr2wsLBg+fLlKJVKPvvsM4YPH07Tpk3p06cPfn5+fPedNrVYUlISYrGYZ8+e8dVXX3H06FHMzc0ZM2YMV69e5fjx48THx9O5c2cuXrzI5MmTSU1NZc6cOZgZGYKQdvOkwf3pWdlMXfY7l8PuYWdtxXc9OtEqwI8b98IZPn0RJ9drcy53GDSOlGfPMRcXXK91YH3G9Puc63cf8u2kOViYm2FqUuCAzxs7mFqVCiaHqcSGw1wyMrP4ZckaroTewc7Gmm96diU4sAE37z7g+2lzOfrHCgCu377H4Ikzdc6tVaUCiydrR3gmzl3GhRvaSbP1a1ZjxNc9cbCz1f/Mlo56+0CbJ3zevHncuH4dW1tbvujbl6ZNm+bn/n6ZelCj0bB27VoOHdSOeLZq3ZovX+QJf0n/fv3o3KULrVoZntHukG14smV6Zha/LF3H5dC72NlY8+2LPOE37z5kxC/zOb5Rm2+508DRpKQ+x9ys4IVTq0B/Rg/oDcCUxWvYf/K8Ttk/fteXj5vq5vpWmBnOEpKRmcXMRcu4djMMWxtr+vfuQYugAELv3OOHydM5uGU9ADfC7jD8x8k659aoWpkF0yYSFRvHlNkLSUx+jLm5GT6eHvTv3YOKhSZtmWoMP1BmZGYxY9EKrt66ja2NNQN6fUbLoEbcunOfH6bM5NDmdS803GXoT1N1zq1ZpRILp2nztWfn5DBr6WouXL2JtZUlnwQ3o8+nHfVG+pLEum8zXiVk52b2bP8DpUKBX6Mm9HslT/jIgT3p0LV3/uh56M0rrFs+jycpyfiWr8y3w8dTxlE7mn/y6H6Wzf9Fp+yg5m0YOFybOz037/Xf5/27/iRk+3qUSgX1Gjbly4Fj8nWM/u4z2nX9In/0/PbNy/y+YjZPnyTjXb4KA4b+RGlH/YfC08dCOHl4t06e8GcN9R1KM3s7qiyaQsmgBuQ+Tyd88jyStu/D3r82dbasyE896Ni+FRV/GYOZrQ3ZETE8nDSX1BO6mUPqbF1J+vUwHk1fVORnNTn+eifweMjvL/KEK6hRvwXd+k3Ir4tpIzoQ3PHr/NHzid+14tkT3e/cz4sP6o10h9+5wvpFY3TyhNcW6aeSfNf3rNC2AwzWgdjOlkqzJr/I0Z1GxMwFPN6zH7t6tanx21JOV9EOqJT5OBjfCT8gtrUhJyqGiBnzeXZae3+w8vWmysKZSN1dyVMoyLz7gIgZ88gMu6t3PRMz/dFxsZ0tFadPokSjBuSmpRExewEpew9gV7cW1Vcv5UxN7SBC6TbB+I4fpdUQHUPkrwt4dlarwdLHmyrzZiB102rIuveAiFnzybytryEnWj/23venQZSfoPvW8eHkRcT9tp2g0H2cqv4x8rgkADyHfYH39/0wlUpI3nmI2wML5edeMx17vxra/NxDJr1Rfu53raNMfcOhS9o84eOxreeHKiOd+OVLeXbkMNbVa1B+9jyuBzfT2tna4j5sJLb16mEiNkMWFUncogVk39PWu8vAQZT+pB0mIjGZobeInTcHRYL+5Ph6Z/Uzqr1rug7/3ye/v8rWeW/+9vJD4x/hhC9evJi9e/cikUjYsGEDw4cPRyQSsXLlSlQqFfXr16d///4MGKC9CYaGhjJ27FjEYjF9+/YtMi68V69eVKpUievXr5Oenk6bNm0YMWIEoA1VmD59OuHh4YB2Yt+0adPw9vZm6tSpHD9+HAcHB4KCgti1a5eOE37pknbkaObMmURERLBo0SIsLIqO4X5JUU74u6QoJ/xdU5QT/i4pygl/1xTlhL9LinLC3zWvc8LfFcU54e8KQ074u6Y4J/xdYcgJf9cU5YS/aww54e8aQ074f5WinPB3jeCEf5j8I5zwv4tevXrx5ZdfGlxx8X0gOOEFCE54AYITXoDghBcgOOEFCE54AYIT/mEhOOEFdBmqH/P+v7BtwYeZivFN+MdNzBQQEBAQEBAQEPhnkWfEqr//Nf71TvipU6d08n+/ZMSIEWzYsOE9KBIQEBAQEBAQEPiv8693woOCgggKCnrfMgQEBAQEBAQE/rNo/iW5vd8m/3onXEBAQEBAQEBA4P0iOOH6/OPyhAsICAgICAgICAj80xFGwj8gRLnFLw39X8FW9uR9S8A85/n7lqBF+v5HD4T288cAACAASURBVMyUb39Z6P8Pcmuf9y2B7NwPI4NQqepvtvLk30GswvDCQe8aC5P3/10tVfntrYj7v6BSGLew1N+JZSnJ+5YAgKno/WeKSbn0/vvmh8J/OBlfkQhOuICAgICAgICAwN9KXp6QHaUwghMuICAgICAgICDwn0QmkzF27Fju3LmDSCRi9OjRBtePWb9+Pdu3b8/fjouLo2vXrowdO5ZLly7Rv39/PDw8ADA3N2fr1q3FXltwwgUEBAQEBAQEBP5WPtSJmWvWrMHa2pojR44QHR3N559/zuHDh7GystKx6927N7179wYgNzeXxo0b07Zt2/zj3t7e7Nix442uLUzMFBAQEBAQEBAQ+FvRaPLe6t/b4sCBA3Tr1g0ADw8PqlatyunTp197zokTJyhdujTVqlX7n64tjIQLCAgICAgICAj8o8jIyCAjI0Nvv62tLba2tkaXk5iYiLOzc/52uXLlSE5Ofu0527dvp1OnTjr7oqOj6dixI2KxmB49etCxY8diry044QICAgICAgICAn8rbzsc5ffff2fx4sV6+wcNGsTgwYPztzt27EhiYqLBMs6fP//G101JSeHixYtMnz49f1+VKlU4deoUNjY2xMXF0bdvXxwdHWnYsOFryxKc8H8A6VnZTFm1hYu3H2BvbcWgbh/TumEdPbv1IccJOXuF5KfPsbexokvzRvRu2wyA5KfP6Tp6ho69TKFkWI929PxIfwKCIQ3Tlq/nUuhd7G2sGdi9I60C/PTsNuw5xP5TF0l+moqdjTWdg4Po1a5V/vFvJ80hMi4RpUqFU+lS9P/0E4Lq1TSqHjIys5i+ZA1XboVhZ2PDgJ5dCW6s38Gvh91l3dbdPIyMxsbKim0r5uocD4+KYd7qDUTExGEpkdA+uClffNrBKA3aushh8pq/uBj2AHsbKwZ1/Yg2DWvr2a3fd4KQs1dJSk3D3tqSrs0b0vvjgrq+FR7NnD92E5WYglPpEozp3YlaFTyN05CZxS/Lfudy6B3sbaz5pkdnWgXW17PbuPsgB06dJ/lJKnY2NnRq1YSe7VsD8Cw9g/nrNnPj7gNkciVebk4M7dONKr5eb1AX2UxZtUlbF9ZWDOrWltaN6urXRcgxQs5cLuibLQLo3bY5AMlPn9H1h+k69tq+2Z6eHzczWsvB3X+yf8d6FAoF9Ro2o8+3ozEzMzdoe+fWZTasmEXqk2S8ylel39AJlCpTruD4zcts+X0RSQkxWFnb0v3LodQPaGmUjmN7N3Bk9zqUCjm1/FvwWf8fDepQ5eaybsEYYiLu8uxJIsN+Xk35qvV0yjl5YBPZmWlYSCyp07AVHXsPRyQq+rYtsrHBfdRYbOv6oUpPJ2H1cp4fO6JnZ2JmhuugYdgHNMZELCbrdiix82aR+/QpAOaOZXEb9j1WVaqgyc3l+amTxC1eAHlqo+rgJWcO/M6pfavJVcip6hdMxy8mIjZQF7GPbnF420ISou9gairCq2I9Puk9Hlv70oA2tdnBLXO5cmobAPWCutC62whMTIpOQfch3DcBRNY2uAz7AZvadVFlpJP82yrSTh7TszMRm+H0zWBsGwRgIhaTc/c28Yvnokp9qmNn7uRM+aXrSD97irjZ04zTYGOD+/djsalTD1VGOomrV/D8uOF+4fLdUG2/EInJvhNG7PyCflEj5LCOvam5BU/27CR+8XzjdNja4jVuPHZ+9VGlpRG3fCmphw/r21lb4z58BPb+DQB4vGM7CWtWF9RB2XJ4//gTVlWqoHycTPSc2WRcuWJkXdjiOXYctvXqo0pPI37FMp4d0ddgYmaG29DhODRugolYRFZYGNGzZpL7VJs+V+LugfuI77GsUBFV2nPili4m7fQpozS4D/wcl96dsKlansQtIYR+NbZIW8+hffD6vh8iSynJOw5x+7uJ5ClzAZC6O1Nj9XTs/aoji03i9tDJpB6/YJSG98HbdsL79OljcLS58Cj4zp07X1uOk5MTCQkJlCihTTOalJRE/fr6v6cv2bVrF0FBQfn2ANbW1vn/u7q60qJFC65fvy444f8GZv62HTOxiMNLJvMwJoGhs1fh6+aEt0s5HTsNGiYP6IGPmxPxj1MZNHM5jiXtadWgNmVLOXBmzcx824SUVDqOnEazejWM0jBrzSbMxCIOrJzFw+h4RsxYhK+7C16uTrqGGpj4XV983J1JePyEIdMW4FiyBMGNtM7FiC+64elSDrFIxO3wKAZPncfW+VMo5WBXrIY5q9ZjJhaxZ+1iwqNj+GHaXHw83PByc9Gxk0gs+LhZY1oE+LNh+169cibNW0Zg/TosmjyO5CdPGDhuKj4ebgT46TvShpi5fgdmIhFHFv/Mg5hEhs5dQ3k3J7xdyhauCiYN6I6vazniU1L57teV2vbwr0V6Vg7D565lbN/ONKtbjUMXbjB83lr2zBmLrZVl8XWx5k/MxCL2rZpLeHQcI6cvxNfDBS9X50KWGiYM+gpvdxcSkp8wbOpcHEuVoGUjP2RyBZW8PRjS51McbG3Ze/wMI6cvZMeSGVhKjcvzO/O3bZiJxBxeOpWHMfEMnbUSX3dn/b6pgcnf9HzRN58yaMYyHEs6vOibJTizdla+bUJKKh1HTKGZn3F9EyDs+gX2bV/P6KlLcChRmoXTf2Dnnyv5tM8gPdvMjDQWzRjNl4PGU7NeIDv+WMHSWeOZMGut9vqxkSyb+xP9hk6kak0/ZNlZZGdnGaXj7s1zHN61lqE/r8LeoQwrfh3Ovi1L6dBzmEF774q1aPrx56yeM0rvWPV6TWjQrD2WVrZkZ6azas5ITu7/k+af9C7y+m5DR6JRqQjt9AlSH198p89CFvEIeXSUjl2Zzl2xqlKFu1/3Rp2Vjfv3P+A6eASRE8dpyxn2Pblpzwnt3B6RtTXlZ8+ndIeOPNmxzah6AHgYepZTIavpN3YtNg5l2DB/CEd2LKZNtxF6trLsdPyadqV89QWYmorYvX4q21aO58sfVgJw+cRf3Ll2jKHTdgImrJn5FQ6lnfFv/lmR1/8Q7psAzgOHoVHlcrdHJyRePnhOmo4sMgJFbLSOXakOnbGsWJnw775CnZ2Ny5CROH8zhJhpE/TKkz28b/T1AVyHjESTm0tYl3ZIfXzxmfartl/EFOoXnbpiVbkq9/r1QZ2VjduIH3AdNJzIn8cDcKttcL6tqURKtW27STt1wmgdHiNHocnN5frHbbD0LU+FOXPJCQ9HFqWrw33ocEwlEm526oDYoQSVFi1GkZzM030hAPhMnkLW7TDujxyOfYOG+E6bzq1Pu6BKSytWg/vI79HkqrjZ7iMsfcvj++scch6FIy+kwbFrN6yrVuN2n56os7Pw+GEM7sNH8mj8GBCJ8J3xKym7dvJg+BBsatbCd+Zs7nzZG0VcXLEaFIkpPPplKaWDAzGVFr3uQKmWAXiP6s/F4D7IE1Oou20xvhOH8GD8HABqbZzD84s3ufxJP8q0CaLOloWcrBSM8ul/Izf5m4adFEXr1q3ZsmUL1apVIzo6mrCwMObMmVOk/fbt2xk3bpzOvpSUFEqXLo2JiQlpaWmcO3eOoUOHFnttYWLma6hQoQLZ2e93kRKZXMHxK6F806UNlhILalbwonHtKuw/e1XPtk/b5lT0dEUsEuHhVIagOlW59TDKQKmw7+wValX0xql08QtMyOQKTly6zoBP22MpkVCzog+BdWtw4MxFPdte7VtR0csNsUiEu1NZGtetQeiDR/nHfd1dEIu0C3yYmIBKreZx6jOjNJy6eIWve3TGUiqhRqUKBNSrxaFT5/RsK/t607pJI5wcSxssKynlKcGNGyISmeJc1pFqlcoTFZdQrAYAmULBsSthfNu5NZYSC2pV8CSoVmX2nbumZ9vn46ZU8tB+Xo9yZQiqXZVbD6MB7Sh4SXsbWvrVQGRqykeN6uBgY8Xxq2FG1cWJi9fo/1mHF3XhS2DdGhw8pT8C0rN9Gyp4uWvbw7ksgfVqEnpf2x7OjqXp/kkwpRzsEYlM6dAyiFyVitjE18fCvarj+OVbfNP1oxd905vGtauy/6z+iFSfT17tm44E1anGrYeRBsvdd+byi75Z0igdAGdP7KNxy3a4uHljZW1Lu0+/5OzxEIO2Vy+cwNnVC79GLTA3t6Bj937ERoeTGB8NwJ6ta2naqiM16jREJBJjbWuPYzkXg2UV5uLJvTRs1hEnVx8srW1p06U/F0/uMWgrNjOjWdue+FSqjamp/q24dFlXLK20PzAaNJiYmJKSXPQPvKlEgn3jJiSuXUWeXEb27VDSzp+lZMtWerYWZZ3IuHIZ1fPnaHKVPDtxDKlHwVsY83LleH7yOJpcJarnz0i/fEnnuDFcO7ubukGdcHTxxdLKjuYdvuHaGcMjUhVqNKZ6/dZIpNaYW0hp2PJzosOvF5R1ZjeBbb7ArkRZ7Eo4EtimL9fO7Cry2h/CfRPAxEKCbaPGJG9YS55cRs7dMDIuncehWbCerbljOTKvX0GVpm2TtNMnkLh76NjYNW6GOjuLrFvX9c4vClOJBPvAIBJ/W13QLy6cpYSBfmFethyZVy/l94vnJ48hKaLd7RsHoXqeRlbYLaN1lGjalPiVK8iTycgKvUXamTOUat1Gv+yAAJI2biBPoUCZnMSTkD2UbvsJABJXV6wqVCB+9So0CgXPT54gJyKCEgZSyhnS4BDUlPjVr2g4e4ZSrfQ1WJRzIv3SJVTPn6FRKnl27CgST21dSN3cMStZisdbNkFeHpnXr5EVFmqwHEMk7zrC4z3HUKa+/qHBpVcH4tZtI+vuI1RpGYRPW4pLb+3Ir5WvB7a1qvBw0iLy5AqSdx4m8/ZDynbSb9cPhTxN3lv9e1t89dVXZGRk0LJlSwYMGMDkyZPzR7YXLFjApk2b8m2vXbtGTk4OAQEBOmUcPnyYtm3b0r59e3r27En79u1p0aJFsdcWnPAPnJjkJ4hEpriXK5O/r7ybM5EJr3eUNBoNNx5E4lVodPblsX1nr9I2sJ6BM/WJTXqMSGSKm5Nj/j5fdxci4wzHWL16nZv3H+mNlo+YuZjAnt/x5fgZ1K5cnkpe7sVqiEtMQmQqws2pYBTL293NaOf5VT5t24qDJ8+iUqmITUjizoNH1K1exahzY5KevmiPAgff183JqPa4+SASLxdHnX06NkBEfPEOsLY9RLg5FbStj4crkfFGtMe9cDwLv714wcOoWFQqFS5lyxg8XhiDfdPdmchiPoO2b0bg5VxU37xC20D9UKfXkRAbiZuHb/62m2d50tOekZWh/yOXEBuJq2eBrYVESpmyziTEah8KIh7cBmD8kO4M+aINy+dOICsz3SgdSXEROHuUz9928ShPRloqWZnFj9AZ4sqZ/Yzo1ZAf+gaREPOQwJZdirS1cHEFtRpFfIGjLot4ZNCJero/BOuq1TArWQoTCwtKtggm/XLBQ3XK9r8o0aw5JhYWmJUqhV19fzIuX3oj7Y/jH1HOrWL+djm3imSlp5JtRF1E3b+Ko3PB6qiPEx5Rzq3CK2VV4HHCI0OnAh/GfRPAwtkF1GqUCfH5+2SREXrONcCzw/uxqlwVcYmSmFhYYN+0BRlXL+cfN5VaUrZXX5JWLjX6+lBUv4gw+FCVeiAEqyrVMCup1VCieTAZl/UHWwBKBrfh2ZGDRuuQuLmhUauRvzJSnP0oHKlXEeFvOqFGJli+sJN6eaFITCAvp2CF6ZxH4Ug9iw+jk7hqNbw6Wi2LMHzuk5A9WFerjlnJUphaWFAyuBXpF18T6mFiUvRn+X9iU8WXjNCCtx4ZoQ+QlC2NWQl7rCv7IIuMQ52V/crx+9hUfv+rCheFJk/zVv/eFpaWlixcuJAjR45w6NAhHed56NChdO/ePX+7Tp06nDlzBpFId7Xgnj17sm/fPnbv3k1ISAhff/21UdcWwlFe4fDhw8ydOxcLCwuCgwtGKipUqMCwYcM4evQoaWlpTJ06lfPnz3PmzBlUKhULFizA29sbgHnz5rF//37s7e3x8/PjwoULb5w38lVkcgXWhUIDrC0lZMsUrz1v5Y6DaDQa2jXWj2u6+SCSZ+mZNDfydX+OXIGVVFpIg5Qc+es1rNq6l7w8DW2b6MZEzR09CJVKzeWwe0QnJBkcBSyMTK7AyrKQBispOTK5UZ/hVRrWrcnUhSvYvPsA6rw8+n7agUpGxkHLFAbaQyopti5W7DxMnkZDuxfOZXUfd56kZXDwwg2a16vOwQvXiU9JRf4i1u+1GuRyrPT6RPF1sfqvPWg0Gto2baR3LDtHxqRFa/iyazusjQiH0eowXBfZxdTFyu0HtH0zyF/vWH7frG/cPIGXyOUypFYFMXlSS+3/MlkO1ra6y7sr5DnY2Dro7JNaWiOXaX/Un6WmcP7kAUb9vBD7EqVZtWASG1fO5puRU4rVoZDnILW00dOhkGVjbfPmy8zXC/yIeoEfkZIUw6WTe7GxK/rtgEhqiTpH982dOjsLkaV+e8oT4lCmpFB92240ahWyyEhiFwzJP5516yal2raj1r7DmIjEPD24n7Szr0/ZVRilIgeJZUGbSKQv6kKejdVr6iIp9gHHdi2l9/CCCVdKeQ6SV+pVYmmNUp6DRqMxGBf+Idw3AUylUtSvOIsAedlZmEr120SREE/ukydU3rhd66xGRxK5dEH+8bK9v+TZof3kpj4x+voFGvT7hSEN8oR4lE9SqPZXQb8IXzRXz868jCPW1WsSM3uG3rGiEEktURd6s6zOMtw/0y9ewKlXbyKmTMasRAlKt/0EU4nk/9q7+7ia7/9/4I/Txek61xdzNddjMaWWcrGZsOKTLiSMmetNI5ItQi6yj5GYIX1i2MwQFYlcTCRUhJGplKvKFCpUTpfn/P44O+86nVPs+9t5vd+O5/12c1u9T7yeO+d1Ts/X8/26qPl3SlT/HXEL9Xc+a9MxMoK0TgxVJaXQURNDeW4OKh7nw/JwDGRVVXh59w4erJdPUSjLfoDKZ0Vo/dlE5O/fC7O+1jCztELxVdU7ov8/dE2MUfW8Zipc1fNiAICemQn0TE1Q+aJY+f/leTEM2rYCeXNQJfxvT58+xdKlSxESEoLDhw9DLFZePGRubo6IiAgsWLAAXl5e6Nu3Lw4dOgQXFxds3boVABAXF4czZ87g8OHD2L9/Px48ePD/HZeRoQFK6iRXpZIymDQwj2z/yQQcPZ+CH3xnQKyvOs6KSbiMIR9+AGPD+v+N2owNDVAqkSjH8LKswb9/4PgZHDuXhPULZ0Osr6/yuJ6eLvpb9ULyjVs4l/Lq25lGhgYofakmhtecu6zworgEvoFBmDzGFaf3/4TIsB+QfC0VkbG/v9bfNzJQ83qUNfxc7D91HkfPp2Cj7zTu9WhsZoL186Zgz/F4DJ+zHImpGbC16IaWrzE33sjQEKUqfULS4HNxIDYOsfGJCF7krfJ6lJVXYMH3m9Cre2d84Tbile3XxFFP32zouTh5DkfPX8YPC76sp29ewhDbPq/smxfPHsfMsR9j5tiPsW7FXBgaGkHysuaXVdnfXxupSTQMDI0hkSj/Ii6TlMLw758Viw0w0OE/aN32XRgaGeM/HpNx/Yr6FfSXzh2Fz0Q7+Ey0w+ZVXjAwNEaZpCYORTsGRiZq//7ravnOu3infRfs21b/QrxqyUvoGiu3o2NsopIEAvK54yJ9ffwxyhHXnIaiKCEe3db8PQdSJELXNevx7Fw8rjkNxR8uTtAzM0PbL70ajPHahSMImG6NgOnW2BE0E2IDY5TXei7KFM+FYf3PxdP8B9i57ks4T/RHp/dqFviKDVX/LbGhcb0LM4XwuQkAUolEJcnUMTaBVKL6mrT1mgeRvj7+9HTGTTdHPL94Dp0C5fPRDTt3hamlNZ4eevUJfOpjUH7OdU3Ux9DBez509MW47uqEP0YOw7Pz8ei6WnVubNNhjii5eQMVeY9eO45qyUvomqjGoa5/3t+wHtLycvQJP4jua4JQcOokKh4//sf/Tl1SiQQ6av6uVM3ffXf+N9AR6+Oq03BcGfYJiuLPonvwBgCArLoaWYv80Mi+Pyyjj6H1uM9QFHcaFU8evzKGf6K69CX0zGsGsoqvq4pLUVVSCj0zU6Wf1zM3RXUxv1NoGyKTSv/VP9qAkvC/Xb9+He+//z46/307SbFxu4KTk3yul4WFfNqC4kjTXr16ITs7GwCQnJwMJycnGBsbQ0dHB66ur7/jRn3ebd0C1dVSZOfVVD9uZ/+l9lY+AByOT8bPR04jZNEstGqmWm0qq6jA75eu/6Pb/R3eaSWP4VE+dy3zQa7qosy/RZ+5gJ8PH8eWpT5o1ayJ2p9RqK6W4mH+qys77du8g2ppNXJqzVfOup+NTioLERv2V/5j6OjowOmTgdDT1UXL5k0xdGA/JF19vXmN777TXOX1yMx+1MDrcQm7Ys5g68Kv0Kqp8uth3aMLdq+YhzNbA7Hyy/G4/9djWHTu8MoY5K9HNXJqvx73c9G5nfrX40jceew+FItNy3zRspnyXNaKykosDNqCls2awG/m569su7aavlnzi+d29l9qb+UDwOGzSfg5+neE+H9df99M/uO1+mb/wY4I2x+PsP3xWLBsI9p26Iyce5nc49n3M9GocVOVKjgAtO3QGdm1fra8TILHj3LRtoP8vd++Y1eIUJPcNbQDh+1HI7Hh1yRs+DUJs5eE4J32XZB7/zb3+MP7GTBv3Oz/VAWvq1pajaf5ufU+Xp6bA+jqyqdA/M24a1eVRZny691QcOIYqouLIausxJPIgzDpaQFd80bQNTOHQevWeHwoArLKSlS/eIGnsUfRqJ99g/FZDXDGyu1XsHL7FUz9Jgyt2nXFo+wM7vFH2ekwbdSs3ip40dOH2P79NAxx+Qp9B45SeqxVW9V/q/Z0lbqE8LkJyKvb0NWFuE3N55RR5y4oe3Bf5WeNOndF0e/HUV1SDFlVJZ5GR8H4vfeha94Ipr0tIW7VGj12haPnr5Fo7j4WjQZ8hG4/hr06BjX9wqhzV0jU9AujLnX6RVQETHrKY6it6XBHFJ58/akoAFCWnQ2Rrq58eszfjLt1g+Su6tqQ6hcvcGf5Mlz7zwikThgP6Oig5NYtAIDk7l0YtGmjVL027toNknvq15goxZCjJoauXdX+XaNu3fD02FFUF7+ArLISjyMOwPR9C+g1kj8XkjtZyJjjhWsjP8Vt33kwaNMGpWm3Xv8JeQ3Ff2bC/IOaaVjmH/RAWd4TVBY+Q8mtLBh3bg9d05pBhdkHPVB8q/5pWnwT6nQUPlES/poMDOTVDx0dHaUquY6ODqqqqjTWrpGhAT758AOEHoyFpKwcf9y+i/grNzFioOo2cLEXriAk/Ci2LJyFdi2bq/33zqakwtzECDb/YN6YkaEBBttaISz8CCRl5bienoVzKX/AaZDqdILjCcnYuvcQNi2eh7Z1Fkbef5iHi9duoqyiAlVV1YhNSMK1tExY9eyu8u+oi+HjfjbYvi8SkrJy3Ei7jfOXr+LTj1WnVkilUpRXVKCquhoymQzlFRWorJS/Ru3bvAPIgJPnLkIqlaKg6BlOX0hGl3dfnfwC8kr4EJveCI08AUl5Of64fQ9nr/6JkQNUtz47dvEqthyMRci3M9Gupeo0gvT7D1FZVY0SSRl+2BuD1s0ao3+tD9yGnovB/fpi2/7Df78emUi4/AccP1ZNkk4kJCH0t0j8uNRH5fWoqqqCf/BWGIj1sXT21NeaFlQ3DqW+mXEX8VdSMWKg6pzZ2AspCAmPwZZFXvX3zcs3YG5iDJv3u6l9vCEDPhmJc79H42H2XZSWFCM6fAcGDvmP2p+1thuMh9l3cPliHCoqynFo/3a079gNbdp1BAAMcnBGwukjeJz3EOXlZYiJ+BmWHw5U+2/V1e9jZyTGReFRzh28LH2B2IhtsBs8qt6fr6ysQGWFfIpEVVUlKivKubUCF36PRPHzAgDyueYnI3/Ce73rTwKlZWV4lhCPNlOmQ8fQECa9eqNx/0EoOHVC5WdL09PQbLiTvCqoq4sWru6oePIE1S+eo/rFc5T/9RAtRrkBOrrQNTFFs0+dILn7z3659x04CpfjI5D/MAuS0heIO/w/WA9Sf3jF88J8bFs9Ff2HfqZ2x5O+A0ch4fjPeF6YjxdFj5EQuwvWg+ovcgjhcxMAZOVleHExAa0nToXIwBDG7/eCud0AFMWpbon3MjMdTRyGQ8dY/po0G+mCyqfy16Tg+BGkT5uAzDnTkTlnOgqPRePF5STcXaK6q05d0rIyPDsfj3cm/90vLHqjcf+BKFTTL15mpKHpMEeuXzR3cUPF3zEomLzfC/rNmqMoPu4fPRfSsjIUnT2LdjNmQsfQEKYffIAmgz7C0+OxKj9r0LYt9MzNAR0dNLKzR0sXV/y1S757UVlODl5mZqLdtOkQicVo8vHHMO7aFYVnXr1Li7SsDEXxZ9F2+gx5DL0/QOOBH+HpCdUYStPS0MxxBHRNTCDS1UVLt9GoePIYVc/lz4VRl64QicXQMTBA6/GfQb9Zczw9dvS1nguRri50DMQQ6erU+lpX5ece/noY7aZ4wLRnF+g1MkNX/1nI/UW+uLk08z5eXE9D96VfQ8dAjFYuQ2He+z3kRaq+rkS4RLK6q8PeUgUFBRgxYgT279+Pjh074qeffsLatWtx9epV9O3bF1evXoWJiQlyc3MxevRoJCfLFyklJydjzZo1iIyMxOnTp7Fp0ybs3bsXBgYGmDdvHnJzc197Tnjx5WNqrz8vKcXKbfuQfPM2GpkaY87Y/8CxvzWupd+Bd1AYt4XWKJ9A5Bc+g1iv5laq0wBr+E/15L6fvSYUFp07YNYY9dMOqvXVzwd+XlKKVVt/xqXUNDQyNcHXn7nj04G2uJaWCZ/Vm3D2lx8BAK6z/fG4sAhivZopD46D+mHhjAm4l/sIgVt34V6ufB54+9YtMdnNCYNtrVTaq9Q3Urkm3yd8Oy5fvwlzM1N8NdETmOOS0wAAIABJREFUwz/qj+u3MrBg1Tqc+m0bAODqzTR4ByjvO21p0QObA+VbCl1JvYWtv+xHzqM8GIjFGGBjibnTJsLQQPk2s1GJ+luLz0teYsX2/X+/HiaY4ynfJ/xaxl3MWbcd57f9FwDgPP875Bc9V3o9RvTvC/8p8sV1/iG/4vx1+aKb/r3fw7eTXNHU3EylvQoj1cqcfJ/wXbh04xYamZpi1gT5PuF/pN3G/O82Iu7XLQAAd6+Ff78eNTF8+pEd/GZ+jqt/ZuDr5UEwEIuhU6vau37xXFjWGRjpV6i/xfm8pBQrw/Yi+WbG333TGY4DbOR9c20ot/XgqHkr1PRNG/hPq7njNPv7rbDo0gGzxoxU2xYA/GlafzX2+OE9OBqxGxUV5bCx/wSTvRZy+3Mvmj0Wzh5T0H+wfI/0P/+4hN1hQXj6JA9dultguncAWrSquZMQ+VsY4mLl2/H17muPiTN8YWIq36mktLLh6Qinj/yCk4d2orKiHJZ2Dhg/cykXR+A8N3zqPh22H8n/H5fMckLhE+UFtYEhx9CsZVv8smUp/rx6HuVlL2Fq3hR97YfBedzX0BfL22/s7aDStq6ZGTp+6w8z6w9R/eI5crfJ9wk37d0HXdeswx8j5Hud65qbo/0cH5hbfwiRvh7K7t1FTsgmvExPAyCviLaf7Q2jLl0BqRQvrl1Bzo8bUFWkvPVZ9pqG54knxO5CfMxPqKwoQ68Ph8FtynJun/D1C53xifNMWA1wxu+RW/B71BaIDZTf9yu3y+fYymQyxO4LVton3GmcL3eXYqhINfFg+bkJAPeWrVV7XdfUDO18/GBmZY2qFy+QtysMz86ehrFFb3RauRZ/jpbfZdU1M0ebr+bAzMoGIj19lD24h7+2bVG7HWGrCZMhfqet2n3Cq8pVi0KK/ePN+n6I6hcv5PvHx52CSe8P0HX1Om7rQV1zc7T/eh7MuH5xD7lbN+FlRhr3b7X3+QY6BgZ48P2qep+Lypfq17bI9wlfgka28n3sc7ZuQcHJkzDrY4n31m9AioP8DnNTBwe8O9cHumZmKMvORk7IZjxPrlkYLG79DrosXQpTCwuU5+XjfnCQ2n3CdXRV72LJ9wlfDPMPbVH14jlyQ0NQeOokTD/og+7rNuDq8CFcrO/O84X5hx9CpKcPyb27yNm0kat2t/OajRbOoyDS1UPxjevI3hAsv/NRx+Nk1e0Cuy2dje4Bc5Su3V65CTm7IvDxjaOI/2AkynLkU306zZuMLgtmQMfIEHlRJ3DTq84+4T+tRmPbPvJ9wr1X1LtP+MjKDLXXWXIYd+nVP/QPnN73z+5MCREl4bUoFmYaGhpi+PDh2Lhx4z9KwgFg3bp1OHHiBBo1agRLS0tkZmbi559/fq3260vCWaovCWdNXRLOWn1JOGvqknDW6kvCWWsoCWflVUk4K+qScNZelYSzoi4JZ62+JJw1dUk4a/Ul4aypS8JZU5eE80EISfgnnv9sh6VXORNe/4E6bwraHaWW4cOHK+2K4uUlX4iUkVHTedu1a8cl4ADQr18/pUr3V199hQULFkAqlWLx4sWwtPxnuzwQQgghhBDtR0n4v8zPzw8PHz5EWVkZLCwsMGPGDL5DIoQQQgjhlbbsaPJvoiT8X7Zlyxa+QyCEEEIIERRt2dHk30S7oxBCCCGEEMIYVcIJIYQQQohGyWQ0HaUuSsIJIYQQQohG0XQUVTQdhRBCCCGEEMaoEk4IIYQQQjSKdkdRRYf1EEIIIYQQwhhNRyGEEEIIIYQxSsIJIYQQQghhjJJwQgghhBBCGKMknBBCCCGEEMYoCSeEEEIIIYQxSsIJIYQQQghhjJJwQgghhBBCGKMknBBCCCGEEMYoCSeEEEIIIYQxSsIJIYQQQhpQUVHBdwhEC1ESTv4V+fn5KtfS09N5iEQYSkpKVK799ddfPETCP+obNY4fP65ybevWrUxjqKysxO3bt3H79m1UVVUxbbuuwsJCXtsXisLCQpw5cwZnzpyh50QA1qxZo/R9VVUVvL29eYqGaDM9vgMg/3d2dnYQiUQq12UyGUQiERITE5nFMnv2bOzatQsmJiYAgKysLHh7e+PkyZNM2h89erTa50Lh4MGDTOJQmDNnDrZt2wY9Pflb7PHjx5gxYwaOHj2q8baF1C8AfvtGfHx8g49//PHHGo+htm3btqFly5bo27cvAGDXrl1ITEzErFmzmLSfkpICX19fGBoaAgDKy8uxfv16Lh5Wrl+/jnnz5kEqlSI+Ph6pqakIDw9HYGAgk/a/+eYbBAUF1fu5wfLz4uTJk1i6dCl69eoFmUwGf39/BAYGYujQocxiAIC7d+9i69atyMnJURqcsXgu1q5d2+Dj3377rcZjqC0vLw979uzBhAkTIJVK4evri06dOjGNQV3fNDMzg6WlJaZPn859npI3m0gmk8n4DoL83zx8+LDBx9u2bcsoEuDo0aOIiIhAWFgYHj58iJkzZ2L16tXMfrlfunSpwcdtbW2ZxKGwY8cOpKWlISgoCIWFhZg8eTJmz56N4cOHa7xtIfULgN++8fnnn9f7mEgkwi+//KLxGGp79OgRZs6ciY0bNyI5ORmHDx/Gjh07YGxszKT9UaNGYcmSJdz7ISUlBStXrkR0dDST9hXGjRuHVatWYcGCBTh06BAAYOTIkUwGqQBw8+ZN9OrVq97PDZafF05OTggJCeGSvPv372PWrFmIjY1lFgMAuLq6wtHREX369IGuri53ncVzsXnz5gYfnz17tsZjqK2iogLTpk3DxIkTERcXBxMTEwQEBDCNYd26dXjw4AFcXV0BAIcPH0bLli3x8uVLVFZWIigoiGk8RENkhPxLtm3bJpszZ47M0dFRlpSUxHc4vAsMDJStWrVK5ubmJouOjuY7HF5R36iRlpYmGzZsmMzDw0NWXFzMtG1nZ+fXuqZp7u7uMplMJnNxceGu1f76baLu/9vV1ZV5HHz0AyF79uyZbOTIkTJ/f39e2vf09FT6vrq6WjZmzBiZVCqVOTo68hIT+ffRdBQt8OjRIwQFBSE9PR3l5eXc9dOnT2u87dq3+7t27YrY2FgMGDAAZWVliI+PZ367v7i4GNu2bUNaWprSc8Gq4pmVlcV9PWbMGPj7+6Nfv37o2bMnsrKy0LVrVyZxAPz2C0CYfePevXtKz8WHH37IpG1vb2+lW8sikQjGxsZYvHgxAGDjxo1M4hgwYACio6MxatQoAMCRI0cwcOBAJm3XJhaLUVpayj0nWVlZMDAwYB4Hn1MwFBwcHLB161Z4eHhAJpMhMjISDg4OKCsrg0wmg5GREZM4LC0tkZ6ejh49ejBprz7nz59X+fxmVQmvO5WvrKwMT548QVxcHAAwncpXVFSE8vJy7n1RUVGB58+fQyQScdPJyJuPpqNogSlTpmDEiBHYsWMH/vvf/2Lv3r3o0KEDkw8uod3unzNnDrp06YKjR49i7ty5iIiIgIWFBRYsWMCk/SFDhtT7mEgkYpYAA/z2C0BYfePYsWNYs2YNXrx4gZYtWyI7Oxs9evRAVFQUk/Zf1Y6bmxuTOOzs7PDs2TOIxWIA8l/sjRs3BgCm6wXi4+O55HfQoEFISEhAUFAQ+vfvz6R9BT6nYCg0lPSKRCKkpaUxicPV1RVZWVno1KmT0oCI5YBk3bp1SE1NRVZWFhwcHHD69GnY29tj3bp1TNoX0lS+DRs2ID4+Hk5OTgCAEydOYODAgfjyyy/h5+f3yik85M1ASbgWcHV1xaFDh+Ds7IwjR45AKpVi7NixOHDgAN+hMTdq1ChER0dzz0VFRQUmTZqEffv28R0ac9QvaowaNQo7d+7EtGnTcOjQIVy4cAEnTpzAypUr+Q6NKSElGTk5OUhISIBMJsPAgQPx7rvvMmtbQfF5QepfV8NyQOLs7IyoqCi4u7sjOjoa+fn5WLJkCbZt28YsBiGJi4vjXhdbW9sGizzkzUTTUbSAvr4+AMDY2Bh//fUXmjdvzss2V3ze7ldQVPj09fXx7NkzNGrUiNctvwoKCpSejzZt2jBrWyj9AuC/b+jp6aFZs2aorq4GIJ+Wwaq6VltVVRUiIiJUbrevXr2aSftt27ZFVVUV7t27BwDo1KkTt4MPS9u2bcOMGTPw2WefqVxjic8pGBKJpMHHWU1DUVAk2y9fvgQAZouFaxOLxdDT04NIJEJlZSVatWqFvLw85nHwPZVPYciQIZR4azlKwrWAjY0Nnj17hvHjx8Pd3R1isRiffvop0xj4vt2v0LFjRzx79gzOzs4YO3YszMzMYGFhwTQGQD53cOHChSgoKICOjg4qKyvRuHFjpnMKhdAvAGH0DbFYDJlMhnfffRe7d+9G27ZtuWSDpYCAAFRXVyM5ORnjx49HTEwMbGxsmLWfmpoKb29v7vmoqqrCpk2bmL9Hjh07ppJwq7umKYrt36qqqhAZGcnLFAwrK6sGt1VlNQ1FIScnB76+vkhLS4NIJML777+PoKAgtG/fnlkMJiYmkEgksLKywsKFC9GiRQte5j/7+/tjxIgRSEtLw7p167ipfCzdvXsXoaGhyM7O5m29AtE8mo6iZf766y+UlJSge/fuTNsV4u3+lJQUFBcX46OPPlKa78mCu7s7goOD4ePjg6ioKBw8eBC5ubnw8fFhGocCX/0CEEbfSExMRK9evVBQUIDly5ejuLgYvr6+zOcgK6YGKf5bXFwMLy8v7N69m0n748aNw9y5c2Fvbw9A/rxs3LiR2XStCxcu4Pz584iOjoaLiwt3vaSkBDdu3OC2K9Q0IW1pGhISArFYjLFjx0Imk+HAgQOorKzEV199xSwGQL6GZOTIkRg9ejQAIDIyEjExMdi5cyezGJ4+fQpzc3NUV1dj586dKC4uxqRJk/DOO+8wiwEQxlQ+Z2dnuLi4wMLCgrf1CkTz6MRMLTB37lzu6zZt2qB79+5K11hQd7s/NTWVaQwA8N1333Ff29jY4JNPPsH333/PPA5Afqu/qqoKIpEIY8aMQUJCAtP2hdAvAGH0jZYtW8LMzAwdO3bErl27EBERgVatWjGNAQBXbdXV1YVEIoGZmRkKCgqYtS+RSLgEHADs7e1fOS3i36Svrw8TExNudxjFn86dOzNdaGZra9vgH5ZOnTqF6dOnw8zMDObm5pg2bRqzQ85qKywshIeHB0QiEUQiEUaPHs18+tqFCxcgFothZGQELy8v+Pn5vXLApAl1p/JVVVUxfy709PQwffp02Nvb89Y3iebRdBQtkJ2drXLt7t27TGMQyu3+lJQUlWuXL19mHodinm2rVq0QFxeHtm3b4vnz50xjEEK/AITRNxYsWKAy/UXdNU1r1KgRnj9/jkGDBmHGjBlo0qQJ08GAkZERkpOT0a9fPwDyijDLuceKRGL48OG83JWpSwi3/MvKyvDgwQNuYWp2djbTgZGCjo4O7t69i86dOwMA7t27x/wO4q5du5TukNR3TdOEMJVv0KBBvGzlStiiJPwNFh4ejv379+P+/fvw8PDgrhcXFzM/Ynfu3LkoKSnBggULuNv9y5YtY9Z+bGwsYmNj8fDhQ6Vqb0lJCS9zCidNmoTnz59j7ty58PX1RXFxMRYtWsSkbSH1C4DfvlFYWIjCwkKUl5fjzp07UMy+Ky4u5mWQGBYWBl1dXfj4+HDTURQn4rHg7++PuXPnKs0J//HHH5m1r9C9e3de94NWmDt3LlxcXODm5sY84VTw8fGBp6cnd2x9WloaL9P4fHx8MGHCBPTs2RMAkJ6e/srj5P8tqampuHHjBoqKirBnzx7ueklJCSorK5nEUJufnx8A+bQUW1tbXqby2dvbw8vLCzo6Otz7leU2ooQNmhP+Bnv48CFyc3MRGBiodKSuqakp3nvvPd5+qfAhPT0dt27dwqZNm+Dt7c1dNzU1hb29PUxNTXmMji3qFzV+/vln/Pzzz3j8+DFatmzJXTczM8PEiRMxZswY5jGVlJTgwYMHvCwYBoDKykql3VEUt95Z4ns/aAU3Nzfmd0PqkkgkKCoqQkZGBgCgZ8+eaN26NS+xFBQU4MaNGwCAPn36oGnTpkza/f3333H69GnExcUp7QZiYmICFxcX9O7dm0kctSUmJuLOnTuYOHEinj59yryIMWzYMPj6+sLCwgI6OjUzh1luI0o0j5JwLcLn1lIFBQVYvXo1Hj16hD179iA9PR3Xrl3D+PHjmcbx7Nkz7vARPkkkEoSGhiI3NxfBwcG4c+cO7t27h6FDhzKPhc9+AQijb4SGhjJf6KZOfHw8AgICoKuri7i4OKSmpmLLli0IDQ1lFsPt27e5ebZ2dnZMT3FVEMp+0OvXr4e1tTWvt/x79OgBkUjE3aURiUTQ09PDBx98gMDAQG56yNvg/PnzvJzgWldYWBji4+Px5MkTnDx5Enl5efDx8cHevXuZxeDh4UE7obwFaGGmFsjJyYGnpyf69esHOzs7jBs3Djk5OUxjWLJkCaytrfHixQsAQOfOnfHbb78xjQEApFIpfHx8YGdnBzs7O/j6+vKyN/by5ctRXV2N9PR0AEDr1q2Zn3AmhH4BCKNvfPXVV8jKysKePXuwZ88e3Llzh2n7Cj/++CMOHjwIc3NzAEDv3r3Vzt3XlD179mDatGnIyMhARkYGpk6dysv7VCj7Qdvb22PevHmwtraGvb097OzslBausuDj4wM/Pz+kpKTg8uXLWLRoEaZPn47Ro0czmbb1xRdfAAD3/674w8dzMWDAAOzbtw/e3t7w9vZGeHg4+KgTxsTEYNeuXVzhonXr1igpKWEaw9ChQ7F37148e/YMEomE+0O0C80J1wIBAQHw9PRU2loqICCA6dZS+fn5GD9+PPbv3w9A/ku29i00VpYtW4auXbti4cKFkMlkCA8PR0BAAPMEOCMjA2vWrMH58+cByG+rSqVSpjEIoV8Awugbhw4dQnBwMFfx/N///ocFCxZg1KhRTOMAgBYtWih9rzhgioVffvkFhw4dQrNmzQDI58yPHz9e6dAcFoSyH3RAQABWr16tcsufpRMnTiAyMpL7ftKkSXB3d0dkZCST92pQUBAAICIiQuNtvUpQUBBu3boFd3d3APL37f379/Htt98yjcPQ0FBlmlZDe7prwg8//AAAWLFihVIMrPePJ5pFSbgWUGwtpTB69Gj88ssvTGOoe+reixcveKlgZGdnY9OmTdz33t7ezFfWA6qJVXl5OfPnQwj9AhBG39ixYwciIyO5BPjJkyeYNm0a8yTcxMQET58+5X6hJycnw8zMjGn7igQcAJo2bQoTExNm7SusX78eurq68PPz4/aD3rhxI/M4GjVqBEdHR+bt1iaRSJCTk8MdipOTk8NNIWOxfkOxVkLdYUmsTzFNSEhAVFQU95nh5OQEd3d35kl469atkZKSApFIBKlUitDQUHTr1o1J24pq99WrV5m0R/hFSbgWEMLWUsOGDUNAQABKS0sRGRmJ3377javAsiSVSlFQUMAlGgUFBcwr0IB8i6vQ0FBUVFQgOTkZO3fuZH78sBD6BSCcvlG7Al23Gs3KggULMGPGDOTm5uLzzz/H/fv3sXXrVmbtDxgwAIsXL+YGZ1FRURg0aBCysrIAgMn88Orqavzwww9YtWoVAMDLy0vjbdZHccvfyclJ6cRMlts2zps3Dx4eHujVqxcA4M8//8SKFStQWlrKdIDA9ymmCrUrzqyrzwpLly6Fn58fMjMz0adPH9jY2DBbNNzQSaoikQi3bt1iEgdhgxZmaoFz587Bz89PZWsp1gtcoqOjERcXB5lMhiFDhvBSgVZMOxg8eDAA+UI4X19f5rFUVlZi+/btSs/HzJkzVarCmiSUfgHw3zdmz56N7t27Y+zYsQCAAwcOIC0tDVu2bGEaByDfHlFR5bKysuLmh7PQ0EBQJBLh9OnTTOIYM2YM09MH69OjRw/ua8XiSD5u+RcUFOD69esA5LuS1L5boWlCOcUUANasWYOMjAy4ubkBkH+ed+/endsykDWJRAKpVMrL3SKhnKRKNIuScC1RWFio9CHOamspIcrMzERycjIAoF+/fsxuIwoR9Qu5goICrFq1ChcvXoRIJEL//v2xePFipsmOgpBfk/T0dKXEVFOCg4NRWloKV1dXpV17+Nip5W136dIlXLp0Cfv27cO4ceO466amphg6dCjatWvHLBapVIr9+/dze2Hb29tj3LhxvFTE4+PjkZSUBEC+aJX1Djrqts9UrBUg2oOScC3w3XffYfHixa+8pkmPHz/GqlWruOTXzs4OixcvVtqbmQV1cxhZz2sE5FWkkJAQ7kPc3t4es2bNYrpfuRD6BSCMvlFSUqLy3Ku7pmknT57E0qVLlQ5mCQwM5GXrSnVY7ZutriLPshJPVN2+fZv3U0wTExNVdmRRd03TNmzYgLi4OIwcORKA/DC4Tz75BPPmzWMWg5OTE0JDQ5VOUv3yyy8RGxvLLAbCgIy88VxdXVWuubi4MI3hiy++kG3atEmWl5cny8vLk23ZskX2xRdfMI1BJlP/XKi7pmlz5syRLVq0SHblyhXZlStXZIsXL5bNmTOHaQxC6BcymTD6hlD6haOjo+zu3bvc9/fu3ZM5Ojoyj6M+fPQPddLS0vgO4a2UkJAgCwsLk23atIn7w5JQ3qfDhw+XlZaWct+XlpbKhg8fzjSGEydOyGxtbWVTp06VTZ06VWZnZyc7deoU0xiI5tHCzDeYkI5qf/LkidKR015eXjh69Ciz9hXzGh8/fqx01HJJSQkvu7RkZmYqVSz69u0LJycnJm0LqV8A/PaNqqoqVFZWQiqVoqysTOnYej723DUwMFA6da9jx468vCb14WshXF2LFi3i/STLt019p5iy8ODBA9y/fx8lJSWIj4/nrvP1PjU3N1danGtgYMB07QYADB8+HNbW1tzUNUtLS0FNXSP/DkrC32CdOnXC4MGDkZqayi1EBGqOamepQ4cOePDggdKts44dOzJrX19fHyYmJhCJREpzTFu2bImZM2cyi6N2u4WFhdyHZlFREVq1asWkbSH1C4DfvhEaGorNmzdDJBLB0tKSu25qaoopU6YwiaE2BwcHbN26FR4eHpDJZIiMjISDgwM3QGC5K4eQ8TFwftvFx8dzp5iuXLkSX3/9NZYsWcKk7atXryIyMhJPnz7F9u3bueumpqZYuHAhkxhqs7KywvTp07kFotHR0bC2tuYGCKzmhzdr1oz5rlqELZoTrgVedVT78uXLsXz5co3GMHXqVFy9ehXW1tYA5B+qffv25ebcstoD+FXzGkNCQphsiTZv3jxcuXIFn3zyCQDg7NmzsLGxQevWrQGAyb63QugXgDD6xsqVKxEQEFDv47UHTJrU0KJHIRzE4erqynQ3jPqwmptOaowePRoRERFwcXHBwYMHoa+vD2dnZxw5coRZDJGRkdxBPeqcO3cOH330kcbj+Pzzz+t9TCQS8XLeAtFOVAnXAg0lWgC421ma5OzsDGdnZ+77//znPxpvU51XLSw6deoUkyS8a9euSjs9eHp6arzNuoTQLwBh9I2GEnAAmDZtGpOkLz09vcHHNT0YyMvL4waC6kyYMEFjbRNhE8Ippg0l4IB8wSSLJHz37t0NPs5qMEC0HyXh5F+huG1XH1ZV11dhdeOn9hxodVhV5IXgTegbQrkhqOnBgIeHB6ysrPDZZ5+pnZo0ZswYjbX9Twjl9XibCOUU04YIpV+wGgwQ7afDdwDk7cCq6voqQll4durUKb5DEAwh9A2h9AtNJxlxcXFwcHDADz/8gBEjRmDPnj0oKSnRaJvq5OXlNfg4VeTZa968OcRiMYyMjODl5QU/Pz+0adOG77CUvC3vU/L2oEo4ITygD3GijqaTDLFYDFdXV7i6uuLq1auYP38+goOD4ebmBi8vL2aHF70pFfm3gbe3d4P9TmjVcCEQymCAvPkoCX8L6OjQDQ8FoSS/QvgQp35RQyj9goWHDx9i3759iImJgb29PcaMGYOkpCRMmzaN2aLMuLg4HDt2DD/88AMCAwMxYcIEuLi4MD88iYBbPP4meJvep+TtQEn4GywrK6vBxxULAyMiIliEIwivOiVyx44dfITFFPWLf27YsGF8hwBA80nGl19+iczMTIwbNw6RkZFo0qQJAPk+9seOHdNo27UJpSJPXr1mg6XDhw/DxcWl3ms+Pj58hKWCBgPk30JJ+Bts5syZEIlEkMlkePToEUxNTSESiVBcXIx33nkHcXFxfIfIYVV1TUlJUbl2+fJl7muhHHagyQ/xN6lfAGz6RklJCUJCQpCUlAQAsLOzg5eXF1d5/frrrzUew+vQ9GDAzc0Nw4YNg66urspjMTExGm27LiFU5EmN+qalsJyOsmvXLpUkvPY1VvtzvymDAfLmoyT8DaZIpgIDA2FjY8OdyHj8+HG1yagmCKXqKrRTIvmsyAuhXwDC6RsA4O/vD1NTU+7wkcjISPj7++PHH3/UeNu18T0YiI2NhaOjo9K1uXPnMp/3K5SKPKlRe1pKeXk5Tpw4gS5dujBpOzU1FTdu3EBRURH27NnDXS8pKUFlZSWTGGoTymCAaD9KwrXA5cuXsXTpUu57R0dHbN26lUnbQqm6Cu2USCFU5PnsF4Bw+gYAZGZmIjY2lvu+b9++3OCEJb4HA9nZ2SrX7t69y6Tt2oRUkSdydaeluLu7Y9q0aUzazs/Px82bNyGRSHDz5k3uuomJCVavXs0kBkB4gwGi/SgJ1wIymQwpKSmwsbEBAFy5cgVSqZRJ20Kpuvbo0QM9evTAkCFDXnlIjSYJqSLPZ78AhNM3AKBly5ZKB+EUFRWhVatWTGMA+BsMhIeHY//+/bh//z48PDy468XFxejUqZPG269LKBV5Uj+RSIT8/HwmbQ0dOhRDhw7F+fPnMXDgQCZtqiOUwQB5e1ASrgWWLVuG+fPnw8jICID8VmJwcDDTGPiuuiqEhobi66+/hpGRESZNmoRbt25hxYoVKrdK4sIJAAAQ1ElEQVQWNUVIFXkh9AtAGH2jSZMmcHFx4W65nz17FjY2Nli7di0A4Ntvv2USB1+DgQEDBuDdd99FYGCg0v+rqakp3nvvPY23X5dQKvKkRu054TKZDBkZGejfvz/TGDZv3oyrV6/Czs4OVlZW0NfXZ9q+UAYD5O1BSbgWsLGxwe+//4579+4BkCeCYrGYaQx8V10VLl68iIULF+Ls2bNo1aoVNmzYgJkzZzJLwoVSkQeE0S8AYfSNrl27cnPQAcDT05Np+wp8DQbatm2L1q1bw9LSEra2thpp43UIrSJPatSeE66rq4tp06ahT58+TGPw9/dHUlISQkJCkJaWhl69esHOzg4zZsxgGgffgwHy9hDJaK8drSCRSJCXl4fq6mruWu2kQ9NSUlLUVl2tra2ZxQAAo0aNQnR0NIKCgmBhYYERI0bA1dWV+W4L33//Pa8VeQW++wUgnL4hBJs3b27w8dmzZ2u0/TFjxuDAgQMabaMhDx8+RG5uLgIDAxEQEMBdV1Tk1c0RJ2yVlpYCkE/B4Et+fj7OnDmDsLAwFBcXK62nYeHGjRtISkrCxYsXeR0MEO1HSbgW2LNnD9atW4fGjRtztxNFIhFOnz7NNI6Kigreq65TpkxBhw4dkJCQgKioKJiYmMDNzQ1HjhxhGodiMHD27FkcPnwYCxcuxMyZM3H48GFmMQilXwD89Y3Y2Fg4OTkpLbKq7W07Hj04OBilpaVwdXWFsbExd53lwKy6uhrLli3DqlWrmLVJXu3OnTv49ttvkZmZCQDo3r071qxZw2yHFEC+fuTKlSswNzeHvb097O3t0bt3b94GZ3wPBoj2o+koWmDHjh2IiYlB27ZteY2juroaYrEY1dXV3JxP1lXX4OBgREdHw83NDY0aNUJubi6mTJnCNIbaLl++jGHDhqFVq1bMT8kUSr8A+OsbmZmZcHJyUlpkxQehDAaOHj0KQD4NRoH1wExXVxcZGRnM2iOvZ9GiRfj888+5u3XR0dFYtGgRwsPDmcWQlJQEQ0ND2Nraol+/frwl4HUHA+vXr0fv3r2Zx0G0HyXhWqBFixa8J1pCqbo2bdoUkydP5r5v164d2rVrxzQGAGjWrBmWLVuGhIQEzJw5E1VVVUpTQlgQQr8A+O0b3t7eAMD7zgZCGQwI5aAmOzs7rFy5kteKPFH28uVLuLq6ct+7uLhg+/btTGM4evQonjx5gosXL+LAgQPw9/dHx44dERoayjQOoQwGiPaj6Sha4Mcff0RZWRlGjhwJAwMD7jrLX2gODg745ZdfeE/67Ozs1FacExMTmcZRWFiI6OhoWFpawtLSErm5ubh06RLc3d2ZxSCEfgEIo2+EhYXB09OTWyxbVFSEiIgITJ8+nbeY+JKYmIg7d+5g4sSJKCgowIsXL5gvihwyZIjKNb6mShE5Pz8/jBkzRmkB9cGDB5kOYGUyGVJTU3HhwgUkJiYiIyMDvXv3Zj4YAMANBpKSknDt2jVeBgNE+1ESrgWE8Att3Lhx2LdvH7P26vPw4UPu6/Lychw5cgR6enqCOZacJSH0C0AYfcPFxUVlPj4fC3b5HgyEhYUhPj4eT548wcmTJ5GXlwcfHx/s3buXSftEuFxcXHD79m106NABAJCTk4Pu3btDT09+w/zgwYMaj6FXr17o06cP7OzsYGdnB0tLS5SXl3MnyrIipMEA0W40HUULCOEWc//+/bF27Vreq651q61z586Fp6cn8yRcCBV5IfQLQBh9Q12tgfX0IEB+u33mzJnc902aNEFMTAyzJDwmJgYREREYM2YMAKB169YoKSlh0nZdQqjIkxqLFy/mOwS0adNGZd2Ep6cnoqKimMbRu3dvbjAwZ84cbjBAyL+NkvA3WEVFBcRiMSQSidrHFVvCsaCoKB4/fpy7JoTbyzk5OSgoKGDebkREBPd17Yo8C0LqF4Aw+kbHjh2xc+dOTJ48GTKZDLt27eIqfizxPRgwNDRU2fOY9YJhQLkiP3HiRFRWVsLf358q8jxS7B//8uVLAFCaq69pVVVVqKyshJGREcrKyrj3SXFxcb2fY5oklMEA0X6UhL/Bxo4di6ioKFhZWUEkEin9gheJREhLS2MWi1CqrrUr0FKpFFVVVfD392ceB58VeSH1C0AYfWPx4sX45ptvsH79eohEIlhZWXEH5LDE92CgdevWSElJgUgkglQqRWhoKLp168asfQUhVeSJXE5ODnx9fZGWlgaRSIT3338fQUFBaN++vcbbDg0N5fbQt7S05K6bmpoy3d1KaIMBov1oTrgWCA8Ph729PZMPy7qEVnVV7HErEolgZmYGMzMzphWd+uTk5GDy5Mm83xlgSWh9A+Cnyldbfn4+vvnmG1y7dk1pMMDi6HpAvtjMz88Ply5dgkgkgo2NDdatW4dmzZoxaV/B09MT4eHhSvPyFXvrE35MmTIFI0eOxOjRowEAkZGRiImJwc6dO5nFsHLlSqVDnFjbvHmz2gO1FIOBt3FtEdEsSsK1wIoVK5CYmIjKykrY2dmhf//+sLOzY/KL1c3NDVFRUejRo4cgqq6KOGrT09PDBx98gMDAQHTu3JlJHPVV5BW/4Fg4cOAA7O3tedmiERBW35DJZDh48CAePHiABQsWIDc3F48fP0bfvn2ZxVAb34MBiUQCqVTK26mI3t7emDRpEr777jtEREQgNDQUd+7cQXBwMC/xEPWLl9VdexvwPRggbw9KwrVIXl4ezp49i7CwMDx69IhpksNnNb62//3vfzAwMICHhwdkMhmioqJQVFSE9u3bIyoqCrt372YShxAq8nUHZ/b29rCzs0Pz5s2ZxiEE//3vf1FQUIA///wTx48fR1FREWbMmMFkx4fa+B4MTJo0CR4eHhg+fDgMDQ2ZtKmOUCrypIabmxuCg4O5QsW9e/fg6+uLyMhIniMjRHtREq4Fbt68icTERCQmJuLJkyewsrKCvb09nJycmMXAZzW+Nnd3d5VfGoprzs7OzI6vF0pFHuB3cAbwX5EH5BW9Q4cOwc3NjZv+wLI/KPA9GDh79iwiIyNx+fJlODg4wN3dnbe7AQD/FXlS49y5c/Dz80PPnj0hk8mQkZGBtWvXYuDAgXyHRojWooWZWsDDwwNWVlaYP38+PvzwQ15iWLZsGYCahC84OJiXhE8ikSAnJ4eryOfk5HC3/lmeeObj41NvRX7ZsmVMKvJ1B2cDBw6Evb29xtut69atW/jpp594rcgbGBgoDYqkUimztmtLTk7mBgOAfItCllufDR48GIMHD0ZRURGOHj2K7777DqWlpUo717BQuyJPCbgwfPTRRzh69CiuX78OAOjTpw+aNm3Kc1SEaDdKwrVAeHg4kpKSEBISgoKCAvTt2xf9+/fH8OHDmcUglIRv3rx58PDwQK9evQAAf/75J1asWIHS0lI4Ojoyi+PEiRNKFflJkyZxFXlWC52EMDgDVAdo69evZz5A6969O6KjoyGTyZCbm4uwsDBYW1sza19BKIMBHR0dAPLpMXzcDJ06dSoiIyOxevVqQVTkCSGEDzQdRYvk5+fjzJkzvEw76NGjhyASPgAoKChQqubwMc/UyckJYWFhShX5GTNm4Pjx48xOarxx4waSkpKQmJjI2+AMEMZ0qZKSEnz//ffcdolDhgyBv78/83n6S5Ysga2tLX766Sds2bIFYWFh0NHRwfLly5m0HxcXh6ioKFy5cgUODg5wdXXlZTCioKjIR0VF8VKRJzVOnjyJpUuXolevXpDJZEhLS0NgYCCGDh3Kd2iEaC1KwrXAypUrkZSUhLKyMu64Xzs7O7Rs2ZJZDEJJ+ITixIkTCAgIUKnIDxw4ELt378ZXX33FLBY+B2cA/wO06upqbNmyBd7e3szbrovvwcCUKVPg5ubG+8JMhefPn+PIkSOIjIxEaWkpTpw4wXdIby0nJyeEhIRwp5bev38fs2bNQmxsLM+REaK9KAnXAvv374e9vT0vJwDWxXfCJyR8V+SFMDgDhDFA8/DwYL4TSl1CGgzwvUWi0CryBGrv0Cm2GSWEaAYl4eRfIZSEj9QQ0uAM4HeAtnnzZhgZGcHV1VUp8WR9YBDfgwE+T0WsTWgVeQJs2rQJenp63GLyyMhIVFVVYfr06ZDJZLwcrkWItqMknPwrhJbwESA9PR09evRQupaQkIBBgwYxjUMIA7S6zwPAz2FSfA8GhHAqYm18V+RJDXXvEQU+3iuEvA0oCSdESzk4OGDGjBkYN24cpFIpNmzYgDNnziAmJoZpHDRAq8H3YEAopyIKpSJPCCF8oi0KCdFS+/fvxzfffIPExEQ8ffoUHTp0wIEDB5jH0adPH5UEnI+KfGFhITdH39LSEk2aNGHaPiC/O8EnHR0d3L17V+lURJb75ysEBATA09NTqSIfEBDAW0WeEEL4QJVwQrTY77//jm+++QZmZmb49ddfealGC6Eir9h+zcLCAgB43X6Nz8GAUE5FFEpFnhBC+ESVcEK01OrVq5GUlISIiAhkZWVh8uTJWLBgAUaMGME0DiFU5Dds2IB9+/apbL/GOgmvOxjw9/dnOhgQyqmIQqnIE0IInygJJ0RLlZaWIjw8HAYGBujcuTN69uyJ+fPnM0/CmzdvjgkTJnAV+dWrVzPfacHAwIBLwAGgY8eOvOzKIZTBAN98fHwwYcIElYo8IYS8TWg6CiFvkcrKSujr6zNtU1GR37BhA7KysvD9998zr8gLZfs1vvdiFtKpiLWn5fBVkSeEED5REk6IFjt//jzS0tJQXl7OXZs9ezbTGJYsWYKlS5fCwMAAgHxnjPnz5zOdkiKU7df4HgwI6VRESsIJIW87SsIJ0VLr1q1DamoqsrKy4ODggNOnT8Pe3h7r1q3jOzReKvJCwPdggO9KvIKQKvKEEMIXSsIJ0VLOzs6IioqCu7s7oqOjkZ+fjyVLlmDbtm3MYxFCRZ7wX4lXEFJFnhBC+EILMwnRUmKxGHp6ehCJRKisrESrVq2Ql5fHPI76KvKEvS1btgAANm7cqHR98+bNTKflCGWhLCGE8ImScEK0lImJCSQSCaysrLBw4UK0aNGCl0QnPj6eq8ivXLkSX3/9NZYsWcI8DsL/YUEKDg4O2Lp1q1JF3sHBAWVlZUwr8oQQwieajkKIlnr69CnMzc1RXV2NnTt3ori4GJ9//jnatGnDNI7Ro0cjIiICLi4uOHjwIPT19eHs7IwjR44wjYMIB99z4wkhRAioEk6IlmrevDn3tZeXF29xCKUiT4RDKBV5QgjhE1XCCdFSd+/eRWhoKLKzs1FVVcVdP3jwINM4hFKRJ4QQQoSEknBCtJSzszNcXFxgYWGhdCS4ra0tj1ERQgghBKDpKIRoLT09PUyfPp3vMARTkSeEEEKEhJJwQrTUoEGDEB8fj48//pjXOObOnQsXFxe4ubkpVeQJIYSQtxkl4YRoKXt7e3h5eUFHRwdisRgymQwikQiJiYlM4xBKRZ4QQggREkrCCdFSAQEBWL16NSwsLKCjo8NbHEKpyBNCCCFCQkk4IVqqUaNGcHR05DsMwVTkCSGEECGh3VEI0VKhoaFo1KgRnJycYGBgwF1nfRrhsGHD4Ovrq1KRb9u2LdM4CCGEECGhJJwQLVX7VEKRSMRVoFmfRujh4UE7oRBCCCF1UBJOCNEooVTkCSGEECGhJJwQolFCqcgTQgghQkJJOCGEEEIIIYzxt28ZIYQQQgghbylKwgkhhBBCCGGMknBCCCGEEEIYoyScEEIIIYQQxigJJ4QQQgghhLH/B+CcPVNoKJN+AAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"tags":[]}}]},{"cell_type":"markdown","metadata":{"id":"SWRPvSoZQ341"},"source":["We can see clusters of highly correlated parameters, such as gust and max wind, or GDP, population, poverty population, and Twitter activity (i.e. parameters that scale with population). Let's find these redundancies quantitivately. Specifically, we will use **Variance Inflation Factor (VIF)**. The VIF of an independent variable is a measure of how much its variation can be attributed to other independent variables. The higher it is, the more redundant the (not so) independent variable is. VIF is calculated as follows:\n","\n","$$ VIF = \\frac{1}{1 - R^2_i} $$\n","\n","where $R_i^2$ is the $R^2$ of the multilinear regression model of the $i^{\\text{th}}$ independent variable using the other independent variables as predictors. Why not just use $R^2_i$ to measure redundancy? One intuition is that the inverse relationship will harshly penalize smaller and smaller values of $1 - R^2_i$ (the so-called **tolerance**).\n","\n","We will loop through the independent variables, construct a multilinear regressor for each one, and compute and collect the VIF's. Standard practice is to discard predictors with VIF's over 10. 5 is used sometimes too, and we'll try both threshholds and see how well they filter out our data in the models."]},{"cell_type":"code","metadata":{"id":"nnUg2sP6-DIk","executionInfo":{"status":"ok","timestamp":1603522001992,"user_tz":240,"elapsed":835,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"6657d1ae-9ada-45d6-a23a-c04866775f8c","colab":{"base_uri":"https://localhost:8080/","height":284}},"source":["from sklearn.linear_model import LinearRegression\n","from sklearn.preprocessing import robust_scale\n","\n","# preprocess data\n","features = df.drop(labels = ['dmg'], axis = 1).columns\n","X = df[features].apply(robust_scale)\n","Y = robust_scale(df['dmg']) # get a weird error if I try .apply\n","\n","vif_dict = {}\n","# run linear regression for each feature and calculate VIF\n","for feature in features:\n"," X_i = X.drop(labels = [feature], axis = 1)\n"," Y_i = X[feature]\n"," reg = LinearRegression()\n"," reg.fit(X_i, Y_i)\n"," r2 = reg.score(X_i, Y_i)\n"," vif = 1. / (1 - r2)\n"," vif_dict[feature] = vif\n","vif_dict"],"execution_count":37,"outputs":[{"output_type":"execute_result","data":{"text/plain":["{'gdp': 52.9500797270263,\n"," 'gust_peak': 12.338585234562844,\n"," 'gust_total': 7.567335957063809,\n"," 'maxwind_peak': 20.868875746207838,\n"," 'maxwind_total': 19.164251074726092,\n"," 'mhi': 5.406652921497213,\n"," 'population': 160.54620481443504,\n"," 'poverty_pop': 151.20740399956702,\n"," 'poverty_rate': 5.049258457172382,\n"," 'precip_peak': 16.206418387213727,\n"," 'precip_total': 16.29621857409362,\n"," 'twt_peak': 276.13105651634396,\n"," 'twt_total': 252.13557403271057,\n"," 'wind_peak': 4.817369273234568,\n"," 'wind_total': 8.387395886294627}"]},"metadata":{"tags":[]},"execution_count":37}]},{"cell_type":"code","metadata":{"id":"vbIlotUwTksT","executionInfo":{"status":"ok","timestamp":1603522548691,"user_tz":240,"elapsed":797,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"beee4687-e22c-41ac-9642-e49ce4482e2e","colab":{"base_uri":"https://localhost:8080/","height":124}},"source":["vif_s = pd.Series(data = vif_dict.values(), index=vif_dict.keys())\n","vif_s[vif_s < 10]"],"execution_count":44,"outputs":[{"output_type":"execute_result","data":{"text/plain":["wind_total 8.387396\n","wind_peak 4.817369\n","gust_total 7.567336\n","poverty_rate 5.049258\n","mhi 5.406653\n","dtype: float64"]},"metadata":{"tags":[]},"execution_count":44}]},{"cell_type":"markdown","metadata":{"id":"jFmHET7jZGLm"},"source":["So... using a tolerance of 10, the VIF test says we should use three wind parameters, poverty rate, and mhi (the last two being strongly correlated with each other; see heat map). This does not look like it will work out well. Let's see:"]},{"cell_type":"code","metadata":{"id":"0ONf_rgoZhOS","executionInfo":{"status":"ok","timestamp":1603523340594,"user_tz":240,"elapsed":614,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"ed70293f-8ea6-455f-856c-ce9134e61a18","colab":{"base_uri":"https://localhost:8080/","height":35}},"source":["from sklearn.model_selection import cross_validate\n","\n","vif_features = vif_s[vif_s < 10].index.values\n","\n","reg = LinearRegression()\n","cv_scores = cross_validate(reg,\n"," X[vif_features], Y,\n"," scoring = 'r2',\n"," cv = 5)\n","best_score = np.max(cv_scores['test_score'])\n","print('Best CV r2: %.2f' % best_score)"],"execution_count":57,"outputs":[{"output_type":"stream","text":["Best CV r2: 0.25\n"],"name":"stdout"}]},{"cell_type":"markdown","metadata":{"id":"M7zFHveFb8GG"},"source":["By using only `wind_total`, `wind_peak`, `gust_total`, `povery_rate`, and `mhi`, the best $R^2$ from 5-fold cross-validation was 0.25. Not so hot. Let's rethink the multicollinearity problem. Looking back at the heat map,there's 4 distinct clusters:\n","\n","- Wind: `wind_total`, `wind_peak`, `gust_total`, `gust_peak`, `maxwind_total`, `maxwind_peak`\n","- Precipitation: `precip_total`, `precip_peak`\n","- Socioeconomic: `poverty_rate`, `mhi`\n","- Population: `poverty_pop`, `gdp`, `population`, `twt_total`, `twt_peak`\n","\n","Looking back at this I wonder two things:\n","\n","1. Why are there so many wind features?\n","2. Why the sum of wind features?\n","\n","The answer to #1 is actually easy: I don't know which one of average winds, gusts (i.e. sudden, fast winds), and maximum sustained winds (i.e. the highest average wind speed that is sustained over 1-minute intervals) is the best predictor for hurricane damages. But in retrospect, the popular Saffir-Simpson scale for classifying hurricanes in the US uses maximum sustained wind speed, so I should just use that.\n","\n","For #2, this is a good question. There's really no good reason, physically or analytically, to use the sum. What does the sum of average winds over a time period represent? The distance wind travelled? That doesn't seem physically significant. Furthermore, not every county has the same amount of samples of wind data, so I can't even say that it's a proxy of averages.\n","\n","So, the next step right now will be to look back at the weather data and\n","\n","- Remove `wind_` and `gust_` features.\n","- Replace `maxwind_total` with `maxwind_mean`"]}]} \ No newline at end of file +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"irma_modeling.ipynb","provenance":[],"collapsed_sections":[],"toc_visible":true,"mount_file_id":"1Q4J-Du4O02VX-aMhBgnqA8CcQVFolx1x","authorship_tag":"ABX9TyMB9PeN6zk1xqvplmHHBIWs"},"kernelspec":{"name":"python3","display_name":"Python 3"}},"cells":[{"cell_type":"markdown","metadata":{"id":"dpQIA2trCnVq"},"source":["# Hurricane Irma Damage Assessment Modeling\n","\n","In this notebook we develop a multilinear and decision tree model to assess damages from hurricane Irma.\n","\n","Our dataset consists of weather, socioeconomic, and Twitter parameters from 49 counties in Florida during Irma. The dependent variable is the amount of federal aid from FEMA that a county received, `dmg`."]},{"cell_type":"code","metadata":{"id":"ShFs31gOCjKO","executionInfo":{"status":"ok","timestamp":1603527192161,"user_tz":240,"elapsed":824,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"d7702916-fac1-4bd4-bff8-5962969cda08","colab":{"base_uri":"https://localhost:8080/","height":1000}},"source":["%cd '/content/drive/My Drive/Colab Notebooks/disaster_assessment/irma_modeling'\n","\n","import pandas as pd\n","import numpy as np\n","from matplotlib import pyplot as plt\n","import seaborn as sns; sns.set()\n","\n","df = pd.read_csv('irma.csv')\n","df.set_index(keys='county',inplace=True)\n","df"],"execution_count":1,"outputs":[{"output_type":"stream","text":["/content/drive/My Drive/Colab Notebooks/disaster_assessment/irma_modeling\n"],"name":"stdout"},{"output_type":"execute_result","data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
wind_totalwind_peakgust_totalgust_peakmaxwind_totalmaxwind_peakprecip_totalprecip_peakpoverty_poppoverty_ratemhigdppopulationtwt_totaltwt_peakdmg
county
Alachua County87.221.4173.053.0186.835.018.2511.395381621.24523011912080269956182399.306765e+06
Baker County81.018.6152.038.1153.024.19.217.06390015.35185647294828355111.360526e+06
Bradford County87.221.4173.053.0186.835.018.2511.39453319.14499753248727732413.246248e+06
Brevard County130.928.7240.369.9223.541.04.692.257230312.45259620453753596849354713.192891e+07
Broward County128.231.7216.973.0235.249.010.444.1125228813.15670296591919195126020363821.329551e+08
Charlotte County112.124.9305.263.9265.044.11.690.761930010.851583396631418499872206.625988e+06
Citrus County103.328.8186.855.9214.733.013.185.972065414.443147333511014792967135.568339e+06
Clay County81.018.6152.038.1153.024.19.217.06208899.96537539760072160725381.219590e+07
Collier County41.512.1296.076.9283.063.95.124.204307511.76670916124953378488231636.194133e+07
Columbia County87.221.4173.053.0186.835.018.2511.391072016.5420971826541705031443.225476e+06
DeSoto County112.124.9305.263.9265.044.11.690.76876626.13734273528637489524.049290e+06
Dixie County96.226.8226.553.0200.935.94.392.38362724.43835517826116700759.079057e+05
Duval County143.029.3179.962.0234.442.99.217.0613806915.152105601467659501817721374.740938e+07
Flagler County116.323.5226.359.1238.844.18.664.661313712.052713180915111206763167.243310e+06
Gilchrist County96.226.8226.553.0200.935.94.392.38267516.14288025426018256316.418368e+05
Glades County77.122.1239.262.0210.840.09.967.09231218.94286517157313724421.684916e+06
Hamilton County57.717.0135.932.1132.820.04.392.38279124.03526237730914310537.796505e+05
Hardee County100.225.9372.175.0272.254.02.631.36602623.34005689334927245836.791781e+06
Hendry County115.127.8296.076.9283.063.912.618.84952523.938361124187241556214.864095e+06
Hernando County103.328.8186.855.9214.733.013.185.972577314.044710303126719086543126.987439e+06
Highlands County100.225.9372.175.0272.254.02.631.362005119.837445208878210542446161.104181e+07
Hillsborough County42.313.5134.848.0152.127.05.434.5021444215.5547417709379614368889902344.139342e+07
Indian River County107.024.0251.276.9240.549.910.868.111624910.651797500170215741379235.417251e+06
Lafayette County57.717.0135.932.1132.820.04.392.38157922.7415491606148732214.387254e+05
Lake County101.725.4248.160.0206.436.910.518.054302012.6514297452383356495151471.418739e+07
Lee County101.222.7214.773.0228.149.96.081.898584411.85419823806704754610380636.269670e+07
Levy County96.226.8226.553.0200.935.94.392.38832920.83727263670140770721.823098e+06
Manatee County116.225.2240.855.9234.342.07.085.714105710.85518911968028394855170331.369299e+07
Marion County60.522.0186.147.0156.132.10.440.235588016.2437727956019359977121301.934269e+07
Martin County101.213.7183.134.0188.922.016.329.431700210.958344653310316091285222.936391e+06
Miami-Dade County129.628.7269.062.9238.542.99.335.1845264916.749758141734334276158140637302.417464e+08
Monroe County129.628.7269.062.9238.542.99.335.18896311.863009409751175027158311.061900e+08
Nassau County115.828.5203.075.0218.542.910.059.0174849.17059018862618583249164.184525e+06
Okeechobee County77.122.1239.262.0210.840.02.631.36841521.842524102147741537722.920370e+06
Orange County107.125.5216.366.0244.944.110.367.4820152815.35402189817807138064517943465.216380e+07
Osceola County115.529.9268.069.0285.749.913.437.024889214.0492849207981367990205501.244058e+07
Palm Beach County145.031.0335.276.0273.051.13.961.9217086811.8600597686650514859419041678.307278e+07
Pasco County103.328.8186.855.9214.733.013.185.976763513.0512479330553539630206581.824896e+07
Pinellas County113.524.6242.063.9231.742.95.854.3211599012.251488441259459752807301595.632790e+07
Polk County77.533.5165.855.9157.936.98.066.2110784416.148328207796327080095241164.351088e+07
Putnam County160.035.5205.862.0254.745.118.2511.391895426.3343901925314741631641.110617e+07
Sarasota County160.035.5205.862.0254.745.19.217.06201188.3770227313073254261243681.306549e+07
Seminole County107.024.0251.276.9240.549.916.329.433983912.8499957030683321128331812.173058e+07
St. Johns County116.225.2240.855.9234.342.07.085.71380659.25842315773229426718154341.862228e+07
St. Lucie County107.825.9219.361.0251.144.111.289.245132111.26386517902542467832112322.350643e+07
Sumter County101.725.4248.160.0206.436.910.518.05106729.15793123124251287542173.424526e+06
Suwannee County57.717.0135.932.1132.820.04.392.38829920.344144851332441911242.045323e+06
Union County87.221.4173.053.0186.835.018.2511.39229122.24737334176314940335.774985e+05
Volusia County62.621.6148.155.0147.035.08.664.667987715.24691114864234547538266513.782572e+07
\n","
"],"text/plain":[" wind_total wind_peak ... twt_peak dmg\n","county ... \n","Alachua County 87.2 21.4 ... 39 9.306765e+06\n","Baker County 81.0 18.6 ... 1 1.360526e+06\n","Bradford County 87.2 21.4 ... 1 3.246248e+06\n","Brevard County 130.9 28.7 ... 71 3.192891e+07\n","Broward County 128.2 31.7 ... 382 1.329551e+08\n","Charlotte County 112.1 24.9 ... 20 6.625988e+06\n","Citrus County 103.3 28.8 ... 13 5.568339e+06\n","Clay County 81.0 18.6 ... 8 1.219590e+07\n","Collier County 41.5 12.1 ... 63 6.194133e+07\n","Columbia County 87.2 21.4 ... 4 3.225476e+06\n","DeSoto County 112.1 24.9 ... 2 4.049290e+06\n","Dixie County 96.2 26.8 ... 5 9.079057e+05\n","Duval County 143.0 29.3 ... 137 4.740938e+07\n","Flagler County 116.3 23.5 ... 16 7.243310e+06\n","Gilchrist County 96.2 26.8 ... 1 6.418368e+05\n","Glades County 77.1 22.1 ... 2 1.684916e+06\n","Hamilton County 57.7 17.0 ... 3 7.796505e+05\n","Hardee County 100.2 25.9 ... 3 6.791781e+06\n","Hendry County 115.1 27.8 ... 1 4.864095e+06\n","Hernando County 103.3 28.8 ... 12 6.987439e+06\n","Highlands County 100.2 25.9 ... 16 1.104181e+07\n","Hillsborough County 42.3 13.5 ... 234 4.139342e+07\n","Indian River County 107.0 24.0 ... 23 5.417251e+06\n","Lafayette County 57.7 17.0 ... 1 4.387254e+05\n","Lake County 101.7 25.4 ... 47 1.418739e+07\n","Lee County 101.2 22.7 ... 63 6.269670e+07\n","Levy County 96.2 26.8 ... 2 1.823098e+06\n","Manatee County 116.2 25.2 ... 33 1.369299e+07\n","Marion County 60.5 22.0 ... 30 1.934269e+07\n","Martin County 101.2 13.7 ... 22 2.936391e+06\n","Miami-Dade County 129.6 28.7 ... 730 2.417464e+08\n","Monroe County 129.6 28.7 ... 31 1.061900e+08\n","Nassau County 115.8 28.5 ... 16 4.184525e+06\n","Okeechobee County 77.1 22.1 ... 2 2.920370e+06\n","Orange County 107.1 25.5 ... 346 5.216380e+07\n","Osceola County 115.5 29.9 ... 50 1.244058e+07\n","Palm Beach County 145.0 31.0 ... 167 8.307278e+07\n","Pasco County 103.3 28.8 ... 58 1.824896e+07\n","Pinellas County 113.5 24.6 ... 159 5.632790e+07\n","Polk County 77.5 33.5 ... 116 4.351088e+07\n","Putnam County 160.0 35.5 ... 4 1.110617e+07\n","Sarasota County 160.0 35.5 ... 68 1.306549e+07\n","Seminole County 107.0 24.0 ... 81 2.173058e+07\n","St. Johns County 116.2 25.2 ... 34 1.862228e+07\n","St. Lucie County 107.8 25.9 ... 32 2.350643e+07\n","Sumter County 101.7 25.4 ... 7 3.424526e+06\n","Suwannee County 57.7 17.0 ... 4 2.045323e+06\n","Union County 87.2 21.4 ... 3 5.774985e+05\n","Volusia County 62.6 21.6 ... 51 3.782572e+07\n","\n","[49 rows x 16 columns]"]},"metadata":{"tags":[]},"execution_count":1}]},{"cell_type":"markdown","metadata":{"id":"Fg-Ticrhdpih"},"source":["## Feature Selection\n","\n","We have 15 features, but do we really need them all? Especially when we only have 49 data points. Intuitively, some of these parameters should be redundant; 6 wind parameters surely can be summarized by just one parameter. The following heatmap illustrates this intuition well."]},{"cell_type":"code","metadata":{"id":"B-5M2buOeaQV","executionInfo":{"status":"ok","timestamp":1603527193659,"user_tz":240,"elapsed":2303,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"966b48be-4726-448f-c8f8-799007ce543c","colab":{"base_uri":"https://localhost:8080/","height":508}},"source":["plt.figure(figsize=(12,7))\n","sns.heatmap(df.corr(),\n"," annot=True,\n"," fmt = '.2f',\n"," cmap='coolwarm')\n","plt.show()"],"execution_count":2,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAuEAAAHrCAYAAABhM0NpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gUVReH391NI6S3TUghIYEBQgkQei8CIiJip0hTBASkV0V6EZAivQlSpYmg8tE7BKQXYUhCL+kV0nf3+2NDkiVB2KUk6n2fJ092556Z+9t7Z3bPnHvmXoVOp0MgEAgEAoFAIBC8PpSFLUAgEAgEAoFAIPivIZxwgUAgEAgEAoHgNSOccIFAIBAIBAKB4DUjnHCBQCAQCAQCgeA1I5xwgUAgEAgEAoHgNSOccIFAIBAIBAKB4DVjVtgCBAKBQCAQCASCV4EkSdOB9wBfoKIsy5cKsFEBc4CWgA6YIsvy0meVvSgiEi4QCAQCgUAg+LeyFWgA3Pobmw5AAFAaqA2MkSTJ9znKXgjhhAsEAoFAIBAI/pXIsnxEluU7zzD7CFgiy7JWluVo9I77B89R9kKIdBSBQCAQCAQCwT8KSZIcAIcCihJkWU4w8nA+GEbKbwPez1H2QggnvAjxu7mkK2wNAe18C1sCACU/fbewJaCLiylsCQA8Cr1R2BKwqVi+sCUAkCLVKGwJaFQWhS0BAIVOW9gS2J1Yq7AlAPBWsT2FLQGtQlXYEooMReHcBNApC9/FUWWmFLYEAGyrt1IUtoaX7uOUYizwbQElY4ExL7WuV0Thn6ECgUAgEAgEAoFxzAJWFLDd2Cg46KPbJYE/s9/njX7/XdkLIZxwgUAgEAgEAsErRWH+coPxsnw1AdMc7oLYCHwuSdIWwBloC9R/jrIXQjyYKRAIBAKBQCD4VyJJ0hxJku4CXsAeSZIuZ2//Q5Kk4GyzVcB1IBQIAcbJsnzjOcpeCBEJFwgEAoFAIBC8UpRmhZOWLstyP6BfAdtb5XmtAXo9Zf+nlr0owgkXCAQCgUAgELxSFOYi+eJJRIsIBAKBQCAQCASvGREJ/4dQackk3Fo1IiMqlkNV3i7QpvzMUbi1bIgmNY3z3YeTdPYvADw7taX0CP1ISujkBdxbtdVkHdaVg1F36QlKFYn7dhD36waDcjNnVzy+HILSujgKpZLotct5dE7/QLFT24+wb9wStBoiVywg5fxpk3UcvXKTqVsPoNVqebdWBbo3LXjquj3nQxm08jfWDviEQG93Eh6lMmjFb1y+E0mb6uUZ+V4T0zWE3+O7nafQ6nS8GxRAt7oVDMp/PR/OrL2ncbW1BuDjYIl2VUoDsO18OEuOXATg83oVaVPZ3yQN5gEVKN7qExQKBWlnDpN6eEc+G4vAYKwbvwPoyIq4w8NNSwBQ2jth804XlPaOoIOk1bPQJsSapOPotTtM/eMYWq2Od6uVpXvDoALt9ly+zqB1e1jb610CPV0BuBYRy/hfD/MwPROlAtb2fBdLc+O/mo6fvcSsH9eh0Wpp07Q+n77byqB83fZdbNt7GJVKiYOdLaN6d8XD1RmA/hNmcjn0OpXKlmbGiHyjlkYRcuYCs5evRqvV0rpZQzq1M7xez12+ypzlawi/dYcxA3vTuE7uuTv/p/UcO30enVZL9coV+Kp7RxQK44dwQ85eYNbytWi1Wt5u2oBO7Vo/oUFm9o9rCb91h7EDe9G4dvVcDas2cOz0eQC6fNCGZnVrGl3/Y3Q6HTvWTiT04iHMLaxo230yJUoGGthkpKeycUF/4qJuo1SqKFO5MW98MAiAs0e2sHvDNGwd1QDUaNqBag2MWyPj2Lm/mPHTJrRaLe80rkOXd5oblK/5fS+/7j+OSqnEwc6G0V90xMPVCYCa7fvi71MCAHdnR74f0tOkdgA4fu4y36/cgFaro02TunR+p4VB+drf9/DrvqOYqVQ42Nrwdc9OOecnwMOUVD4ePI6GwZUZ0u3j16rhQXQsw2YsQqvTkaXR8GGLRrR7o4FJGh7ryO2TunQuoE+27T+W0yfffNExf1sMmUDD4EoM6fqRiRou8f2KDWi1Wto0qUfnti0Nytf+tju7LfQavu7ZGQ9XZ67dvMPUpWt4lJqGSqmky7tv8kad6k+p5dkcO3+F6at+QavV0bZRTbq0aWZQvvqPA/x6IASVSomjrQ2je3yMh4sTp/4K5fvVub/lNx9EMenLT2kUXNFkLa+awkpHKcoIJ/wfwt2VW7g5fzVBy6cWWO7asgHFA3w5UK45DjUrU2HuGI7V/RBzR3vKfN2HI7XeQ6fTUf/EFiK37yMrIcl4EQol6m5fcnfiCDJjYyg5+Qcengoh497tHBPndu1JPn6IhN2/YeHpg9fw8Vzv2xkLTx9s6zTi5qAemDk64fX1FG707w4mzCer0WqZtGUfi3q2Q21vS/uZa2kU6I+/u7OB3aO0DNYcPktFH/ecbRZmZnz5Zh3CImIIe2Caw/lYw+QdJ1nYoRlqO2s6LNtBwzJe+LsarhvQvLwvI1oa3iAkpqaz6PAF1nZvhQL4ZNkfNCrjhV0xS+NEKBTYtO5A4soZaJPicfjiGzKunkMT/SDHROnkhnWDt0hcOhldWgqK4rY5ZbbtupNy6Hcyw/8CC0vQmTaFq0arZdL2Iyzq+hZqu+K0X/gLjcqVxN/N0cDuUXoGa45doqKXW862LI2WkRv3M/H9xkgeziSkpGGmMn6ATqPRMmPZGmZ/MxA3J0e6jZhA/eAg/LxL5NiU8fPhx6lfY2VpyZad+5m3aiMTBuqdqg7vtCQtPZ2tuw+Z1AZ5dXy/5CdmfjsUN2cnPhv6LfWqV8XP2zPHRu3qzMi+n7PuV8MbpotXQ7l4JZSV308EoPeo8Zy9fJWqFcoZrWHGklXMGj1Er2HYWOpVr/KEBidG9fmMddsMNRw7fQ75+i1WzBhHZmYWfUZPoXaVShS3LmZsUwAQevEQcZG36Dd5J3evn+f3n8by+Tcb8tnVadEVv3K1yMrK4KdpXQm9cIjSlfROXmCNN3mr42iT6tdotXz34wbmjuyD2tmBzqOm0aBaRUp5eeTYSL7e/DSxPlaWFmzafZg5a7cy+atuAFhamLN2ygiT6n5Sx7Tl6/lhVD/cnB3pMnIK9atVMtBRxteblZNGYGVpweZdB5m75hcm9v8sp3zRhu1UKRtQKBpcHO1ZOn4IFubmpKSl0X7weOpXq4SrU0HrpDxbh75P+uLm7EDnUd9Rv4A+WTlxWHafHOKHtVuZ9FX33LbY+BtBL9wW6/hhVH99W4yYTP3gSpTyyvN94evDyskN87TFZib274GVhQXfftkVHw810XEJdB4xkVqVA7Etbm2SjqkrNzNveE/UTg58OnomDapVoJRn7m9WWV9P3h8/UN8We44yZ912JvftTHD50qydNASAxIePeHfQJGpVlExuk9fBy54d5d/APyYdRZKkc5IkGf1LIEnSTUmSKvxNeZAkSR8+57F8JUnqYYTtS1vtJe7IKTLjEp9arm7TlHvZd8UJJ85jbm+Hpbsrrs3rEb33KJnxiWQlJBG99yhuLUybWccqQCIz8j6ZURGgySL52AFsqtd+wkqHspj+y0hpXZys+DgAbKrXJvnYAXRZmWRGR5IZeR+rANO+MC7djsDbxQEvZwfMzVS0rCJx4FJ4Prt5O47RtUmwQVTV2tKcqqU8sTR7sfvPS/dj8XayxcvRFnOVihaBJTlw7Vmr4uo5Fn6fWn4e2BezxK6YJbX8PDgaft9oDWZepdDERaGNjwGNhvSLJ7EoW8XAxiq4Aakn9qFL0y8YoXuUDIDK1QOUKr0DDpCRDpkZRmsAuHQ3Gm9ne7yc7PT9UdGfA1du5rObt+cUXRsEYWmWu6jJ8bC7lHZ3QvLQ30A5WFuhUhr/tfRX2A283N3wVLtibm5Gs7o1OHTqnIFNtQplsbLU3+gElvEnKi4+p6x6xXIUL2ZldL1PciUsHC8PNzzd3fQ66tXiyMkzBjYebq4E+PqgVBr+ICkUkJ6ZSVZWFplZmWRpNDg52Jmg4Tpe7uocDU3r1eTwn2cL0OCdL8p+4859gsqXwUylopiVJQElvQg5e9FoDY+Rz+6lcp13UCgUePsHkZaSRHJClIGNhWUx/MrpF/0xM7PAo2R5kuIjTK4zL5fDbuLt7oKX2gVzMzPeqF2Vg6cuGNgEB5bBylK/AFPFAF+i4l7WjGe5/BV2Ey93V/35aWbGG3WCOXTq/BM6pBwdFUqXMjg/r1y/RVxiEjUrmb5o1otoMDczw8LcHIDMzCy0Jt6wg75P9Dr0fdK8djUO/W2f+Bn0yZXrt4lLTKZWpbIma/gr7AZeajfDtvjzibaokLct/IiK1WvwKaHGx0M/MuPq5ICjnR3xSckm6bgcfhtvtQtebtltUasKB09fMtRRvnSujoCSRBZwfu49eZ46lcvm2An+OfxjnHBZloNkWU59BYcOAp7LCQd8gedywl83ViXUpN7N/eFKuxeBlacaqxJq0u7k2X43EqsSapPqMHNyJjM2Oud9VmwMZo4uBjYxG1djV78Jpeavxmv4eCJ/nKff19GFrJjcfTNjYzBzMoxcPy9RiQ9xd8iN6Lo52BCZ+NDA5srdSCISkmlQvpRJdTxTQ3IK7nbFc96rbYsTlZz/9Nx79TYfLN7O4E0HiUh8lGff3KiJ2s6aqGTjV1VT2jqgTYzLea9NikdpZxiZUjm7o3JRY//ZcOw/H4l5QIWc7bq0FGw/7o1Dr2+xbv6B3gs0gaikR7jb57aFm11xIpMeGdhcuR9DROJDGkg+BttvxSaiAHqu+IOP5m3mx8OGjvPzEh0Xj5tzbuTdzcmR6Nj4p9pv33uY2lVe/rBtdGw8bs6557WrsxPRcU/XkZcKUmmqVijHO9378U73ftQIqoivl+ezd3xSQ1w8bi5OOe+f1RZ5CfD14cTZi6Slp5OQlMyZS1eJijV9xCgpPhI7p9wIp52TO0nxkU+1T01JQj63H79yuTf3V07vZv7oNvw8rx+JcQ+eum9BRMcnos5zXqidHYmOf3ow49cDx6lTOdfRzcjM4tORU+n6zXQOPOGkGUNUXIKBDjcnR6L/xtnftv8otYP0aTtarZY5qzbTr+N7Jtf/ohoAImPi6DB0Am9/OZJObZqbFAUHiI5/QoezA9Hxf6PjwDFqZ/eJVqtl9uot9OvwYisq52sLZ8e/1/BEWzzmctgNsrKy8FK7mqYjPgF1nnZ0c7In6u/Oz4MnqFM5/8jYrpCztKhd1SQNrxOlmeKl/v0bKBLpKJIkfQFUkmX5S0mSagAngBqyLP8pSdJ84BywCLCVZfmhJEk3gZ+ANwAPYLosy3Ozj1UfmJ996IPAU3tKkiRnYBxgJ0nSOeCQLMv9JElqCUwGVEA08IUsy2HAPMAv2zZMluX3JUmaDjQELIAYoJssyy9lJaV/InZ1G5F4cDfxv23GqnQ5PPoM5ebgL16rBq1Wx/RfDzHuk+bPNn6FNCztxZuBvliYqdh0+hrfbDvKkk6vV5NCqUTlpCZx+TSUdo7Ydx9GwrzRoFRiVrI0CQvGok2Mw/aDnlhWqUv6mSMvXYNWq2P6H8cZ916jfGUarZaztyJZ2+tdrMzN6PHjb5Qv4UpNf+Odz+flf4eOc/X6LeaPHfLK6jCFuw8iuXX3PluWzAJgwNipnP9LpnL51zfEXDOoAlfDrvPFyAk42NkRKPmjNGFkwhQ0miw2LxxEzWadcHLzBkAKakzFmq0xM7fg1IH1/LJ0OF2Grnwl9f9x+CRXrt9m0eivcrZt+2Ecbk4O3I2MofeEOQT4lDDZ4Xpedhw+wZXrt1j47UAANu86RJ0qFQycxlfNkxoA1C5OrPnua6LjEhg6YyFNalbF2YSRGuN06Ptk4ej+AGzafYg6QYGvuS1CuBJ+i4VjBhlsj4lPZMzcHxndu8truUb+OHKKK9fvsPjrPvl0hN15QO2Kpo8MvC5EOkp+ioQTDuwFBmS/bgocz/7/Z/b/GQXsYy3Lcm1JknyBS5IkrQAygfVAB1mWD2SnmXz5tEplWY6VJGk00FqW5fcBJElyQz8xe0NZlv+SJKk7sAaomX2s6bIsB+c5zBRZlgdn7/sZMBUw7amZFyDtfiTFvNx5HO+y8nQn7V4kafcjcWqYm5Ns5aUm7uBJk+rIiovF3Dn3B8jM2YWseMOMG/vGLbk7eZReU+gVFOYWqGztyIqPwcwld19zZxey4kyLsLnZ2xCRkDv8F5XwELW9Tc77R+kZhEXE8Nm8TQDEJD/iq2XbmN29DYHe7vmOZ5IGW2si8kR7I5Mf4WZrmC3lYJ2b4/1ulQBm7TuTs++pW7nRwMikFIJLGj86oU1OQGmfG/FU2jmiTTKM5miS4sm6ex20GrQJMWhiI1E5qdEmxaOJuKNPZQEyrp7FzKsU6RjvhLvZFc+J8oM+Mq7OM0rwKCOTsKg4Plu2HYCYh6l8tXonszu2wM2uONV83XEsrk8FqVfGhyv3Y4x2wl2dHInKE+2NiovHtYAf6pMX/mLFlt+ZP3ZozvD6y8TV2dEgchwdG4er0/M5DIdOnCKwjD/W2WkxtapW5pIcZrQT7urkSFRM7gjJ09riaXR+vw2d328DwJiZC/H2MO6aObl3DacPbQTA068iSXmi10lxEdg5Fnyub185Gid1SWo375yzzdomV3fVBh+we+N0o7S4OtoTmee8iIyNx9XRPp/diYtX+XHrThaN7m9wXrhlRym91C5ULV8a+eZdk5xwNycHAx1RcfEFRpJPXrzCil/+x4JvB+TouBh6nXNXw9i86yAp6elkZmmwtrLky/bGRYNfRENeXJ0cKOVdgnNXw2hay/joq6vjEzpiE3B1LEjHVX7c+j8Wjs7bFjc4dzWczbsPkZKWTpZGQzErS/p80tYoDfnaIja+YA0XrrBiyw4WjBlk0BYPU1IZOOUHen78DhXLmD7a6uboYJBeEhWXiFtB5+clmeXbdrN4VB8snnhoffeJczQOrohZnjQ/wT+HIpGOkh1lLiZJkhd6p3sk0FSSJG/AUpbl/Am/emcbWZZvAvHoV0KSgBRZlg9kl20Anj62UzA1gfOyLGcny/IjECRJku1T7N+UJClEkqRLwGD06S2vnajt+/DsqP8icqhZmaykZNIjoonedQTXZvUwc7DDzMEO12b1iN5lWrQzLVzG3N0Tc1c1qMywrdOIh6dCDGwyY6KwrqBvAgtPb5TmFmiSEnl4KgTbOo1QmJlj7qrG3N2TtDDZJB2B3u7cjo7nbmwimVka/ndWpmGF3C9C22KWHBzfix3fdGfHN92pVNLjpTrgAIElnLkdl8y9+GQyNRp2Xr5FwzLeBjbReVJMDl67i5+L/su1jn8Jjl+/T1JqOkmp6Ry/fp86/iUwlqx7N1A5qVE6uIBKhWXFGmRcNUznyLhyFnNfvROnsLZB5axGEx9N1r0bKKysUVjrb17M/cqiiTY+Lx0g0NOV27GJ3I1L0vfHxXAali2ZU25rZcHBkZ3ZMbg9Owa3p5KXG7M7tiDQ05W6pb0JjYwjNSOLLI2W0zceUMrN+ChXuQBf7jyI5H5kNJmZWew5epL6wZUNbOQbt/lu8SqmDeuLk/2rieCVDShlqONICHWrV3n2joDaxZmzf10lS6MhKyuLc5evUtLL+POibIAfd/No2HvkBPWCn0+DRqMlMVmf2hV28w5ht+5QI+ipj9QUSI2mHeg1diu9xm6lbJWmnD/2Kzqdjjvh57C0tsXWwS3fPnu3zCI9NZmWn4w02J43f1w+uw8XD+NmESrvX5LbEdHci4ohMyuL3cfP0KBaJQMb+cYdJi9dz4zBX+Bkn/s1n/QwhYzMTAASkh5y4dp1/DxN+w4p51+SOxFR3H+s49ipAnVMWbKWaUN6GZyf4/p2Y9u8SWydO5F+Hd6jVf2aRjvgL6ohMjaetAz9MyNJDx9x/mo4JU1MayyfreNxn+w6fpr61QxTw/R9so7pg3sa9Mn4Pl3ZPncCv/4wnq86vkur+jWMdsAByvn75m+LAr4vpixdzbShvQ3aIjMri2EzFvBmg1o0rVXN6LrzUr6UN3ciorkXFatvi5CzNKhqmPZy9eZdJi3fyPcDPzNoi8fsPP7PSEUBkY5SEEUlEg6wD2gNqLOj2HOBt7K3F0Rantcanv5ZTH+C5BlIklQSmAlUl2X5hiRJdYC1r6KuoFUzcG5YAwsXR5rcOEjouB9QZN8R3168nqgdB3F9syGNru5Gk5rKhc/0P2aZ8YmETppPveP6qHDoxHlk/k3O2d+i1RK1fB5eIyeBUknigV1k3L2F8wefknb9Go9OhxC9ajHuX/TH8a12oNPxYIE+cpVx9xbJxw/hO2MxaDVELZ9r0swoAGYqJSPaNaHX4i36aZ1qBBLg7sK8HccI9FbTqMLf/1C/OX4ZD9PSydRo2X8pnIVftMs3s8ozNSiVDG9Zg17r9qLV6ngnKIAAVwfmHzhH+RLONCrjzbo/r3Lg2l3MlErsilkw7u06ANgXs6RH/Up0WK6fmaJH/UrYGzszCoBWy8Pf12D/6QBQKkk7cwRN9H2sm7xD1r2bZMjnyQy7hEVAIA59xoNOy6OdG9Gl6qPWj3ZuwL7LYFAoyLp/i7TTps0MYqZSMqJ1XXqt3IFWq6VtNYkAtRPz9pwi0NOFRuV8n7qvXTFLOtWtRPuFv6AA6pfxzpc3/nwaVAzq3p7+E2fppwZsXJdS3p4sXr+Vcv6+1K8exNxVG0lJS2PUjIWAfnh92vC+APT8Ziq37j0gJS2dNl8MYWSvztQy0vl8rGPgZ58ycNx3aLU63mragFI+Xixdt5my/n7Uq1GVK6HXGTl1NsmPHnH0z7Ms+/kXVs+eTKPaNTh98Qqd+49EoVBQs0pF6j2nA/+khgGfdWTg+OlotFpaN6lPKR9PlqzbQtkAP+pXr8KVsOuMmPqDXsOpcyxd/wtrZk8iS5NF768nAWBdzIrRX/XATGV6hK10pYaEXjjEnOHNMbew4p1uk3LKFnzbll5jt5IYF8Hh3xbi4lGKRWPbAblTEZ7Yswr53H6UShXFbOxp232y0W0xtMuH9Js8D41WR5tGtfD39mDhxt8o5+dDw+BKzF67ldS0dIbPXgbkTkV4434Ek5euQ6lQotVp6dzmDYMZPIzVMbjrx/Sb9IN+2sjGdSjlXYJFG7ZTrpQPDYIr88OazaSkpzNyln4KUXcXR6YP6W1SfS9bw817EcxZvTnnWB1aNyPAx7SUMTOViiHZfaLVanm7UW38vUuwKLtPGgRXYs7aX0hNS2fE7KV6Hc5OzHiB6SEL0jC428f0mzQ7W0Pd7LbYRrlSJfVtsXozKWnpjJy5WK/BxYnpQ79kz/FTnL0SSmLyI34/eByA0b27UMbX+++qfHpbdH6Pvt8t0k+t2rAm/l4eLNy0g3J+3jSsVoE567bpz885KwD9cw0zB+lnzbkfHUdkXAJVy5o2xe3rRqH6dzjOLxOF7gWecn6ZSJLUEZgA/E+W5Z6SJC0CWgCjZFleI0mSDsOc8NayLF/K3vcmegc+FAgHPpFl+bAkSe8DG4GKj20LqLcd0EuW5Tey37sCfwH1ZVm+KklSV/Q54bUkSaoK/CzLculs24rATsAfSAdWAA1kWfbNTpM5JcuyS75Kn8Lv5lKhd0ZAO9/ClgBAyU9f7MGbl4Eu7qVNbvNCPAq9UdgSsKlo+qwML5MUqeD54F8nGlXRmIFAYeJN7Mtkd2KtwpYAwFvF9hS2BLQKkQ7wmKJwbgLolIUfZ1RlGv/Q/avAtnqrQveAD1Wo8lJ9nAaXzhb6Z3pRikQ6Sjb7gJLo88PJ/l+Sp0fC8yHLcjrwCTBfkqQLQCPg9t/upK+nuCRJ5yVJmiPLcjTQCVibfYyO2X8AFwBZkqRLkiRtkmX5Inon/y/0D5MWvrckEAgEAoFAUMRQqhQv9e/fQJGJhAtEJDwvIhKei4iE5yIi4bkUhWijiITnIiLhuRSFcxNEJDwvRSESfrRKtZfq49Q9e7rQP9OLUvhnqEAgEAgEAoHgX43ChNWQ/+38Z5xwSZJOkf/zhsiy/PKe9hAIBAKBQCAQCJ6D/4wT/sTc3gKBQCAQCASC18S/JY/7ZfKfccIFAoFAIBAIBIWDQimc8CcRCToCgUAgEAgEAsFrRkTCixBFYWaSsC03C1sCAN59jFs851WgKCKzoxQv7VfYEsDSqrAVAJBsnX+1xddNhqJotIVDWkRhS8DH8VFhSwDgvmW5wpaAU3rh9weAmSbt2Ub/EcSMNUULkY6SH+GECwQCgUAgEAheKWLFzPyIdBSBQCAQCAQCgeA1IyLhAoFAIBAIBIJXikIp4r5PIpxwgUAgEAgEAsErRcyOkh9xWyIQCAQCgUAgELxmRCRcIBAIBAKBQPBKEbOj5Ec44QKBQCAQCASCV4pIR8mPcML/QVhXDkbdpScoVSTu20HcrxsMys2cXfH4cghK6+IolEqi1y7n0bk/AXBq+xH2jVuCVkPkigWknD9tkoZKSybh1qoRGVGxHKrydoE25WeOwq1lQzSpaZzvPpyks38B4NmpLaVH9AIgdPIC7q3aapIGgKOXrjFt3R9otVra1q9Gt1YNDco3HjjJhv0nUCoVWFta8PWnbfEv4UbI5TDmbN5FpkaDuUpF/w9aUKOcv2kawu/x3c5TaHU63g0KoFvdCgblv54PZ9be07jaWgPwcbBEuyqlAdh2PpwlRy4C8Hm9irSpbJqGoqLj6NWbTN12CK1Wx7s1AuneJLhAuz0Xwhi06g/W9vuIQG81x6/dZvYfR8nUaDFXKRnQuh41A7xN0vDnqdMsWLwUrVZDy+bN+fjD9w3KL1y6xMLFS7l+4yYjhw2hQb26OWUjv/mWK/I1KpQvx/gxo02q/zGnT/3J4kUL0Gq1NG/Rkg8+/NigPDMzg++nTyMsLBRbW1uGjRiFWu0OwI0b15n7w2xSU1JQKBTMnD0XCwsLozWEnLnA7OWr0Wq1tG7WkE7tDK/Vc5evMmf5GsJv3WHMwN40rlMjp2z+Tz9z/PQ5ALp88A5N69Uyuv7H6HQ61i6bxsXTR7GwtKJ73zGU9M8/p/fN8Cssm/MtmRnpVKxWl/bdh6BQKLh9Q+anhZPIzMhAqef6YXQAACAASURBVFLRqcdwSpWpUEBNT+fMqZMsWTQPrVbLGy1a8f6HnxiUZ2ZmMHP6VMLDrmFra8eQEd/k9AdAdFQkfXp24+MOnXn3vQ9NawjgxJnzzF62KrtPGtHxvTYG5ecuX2HO8tVcv3mbbwf1oXGdmnr9Fy/zw/LVOXa37z3g20F9aFCz4Gvs7zh+9iKzflyHRqujTdP6fPpuK4Pyddt3sm3vYVRKFQ52Noz6siseri4A9J8wk8vXwqlUtjQzRn5ldN0vS8fvB46yYtNvAHR5vzVvNaqb7/jPQ8jZC8xavhatVsvbTRvQqV1rg/Jzl2Vm/7iW8Ft3GDuwF41rV88pm79qA8dOn9dr+KANzerWNEkDwPFzl/h+xQa0Wi1tmtSjc9uWBuVrf9vNr/uOYqZS4mBnw9c9O+Ph6syD6FiGTV+AVqcjS6Phw5aNafdGw6fUIiiqCCf8n4JCibrbl9ydOILM2BhKTv6Bh6dCyLh3O8fEuV17ko8fImH3b1h4+uA1fDzX+3bGwtMH2zqNuDmoB2aOTnh9PYUb/buDTmu0jLsrt3Bz/mqClk8tsNy1ZQOKB/hyoFxzHGpWpsLcMRyr+yHmjvaU+boPR2q9h06no/6JLURu30dWQpLRGjRaLVPWbGfBwK6oHe3oMGEhDYPK4V8idyGXN2tW4oNGesfiwLkrfP/zDuYN6IyDrTWz+nXEzcGOsHuR9J65gl3Th5mkYfKOkyzs0Ay1nTUdlu2gYRkv/F0dDOyal/dlRMsaBtsSU9NZdPgCa7u3QgF8suwPGpXxwq6Y5T9Sh0arZdIvB1jU413U9ja0n/MzjQL98FcbLrj0KC2DNUfOUdFHnbPNobgVc7q+jZu9DaERsfRaspU933Q3rhEAjUbD3AWLmDJhHC4uzvQdMIjatWpQ0scnx8bN1ZXBA75i05b8N38fvNeOtPR0/tjxP6PrflLHgvlzmTBxCs4uLgzo35eatWrj41Myx2bXzv9R3MaGJctWcPDgflYsX8awEaPQaDTMmDaVgYOHUqqUP0lJSahUxi82otFo+X7JT8z8dihuzk58NvRb6lWvip+3Z46N2tWZkX0/Z92vOwz2PXbqHNeu3+TH7yeQmZlF328mUatqZYpbFzOpPS6eOUrk/TtMnr+V69cu8dOiyXzz3U/57FYtnEyX3t9QqkwFZo7vx8Uzx6hUrS4bV86mzYc9qFStLhdOH2HjT3MYNmGxEW2hYdH8OYyd+B3OLq4M7t+bGrVq4+Pjm2Oze+cObGxsWLRsFYcO7mPl8iUMHfFNTvmyJQuoGlyjgKM/PxqNlu8Xr2DmmBG4Ojvx+dBvqFujKn7eXjk2alcXRvb9gvW//m6wb9WKgfw4czIASckP+bj3QGoEVTRJw4yla5g9ehBuTo50Gz6e+sFB+HmXyLEp41eSH6c2wsrSki079zNv1SYmDOwJQIc2LUjLyGDrroOmNMFL0ZGY/JDlG7axfOo3KBQKug4dR/3gIOxsihuvYckqZo0eor9Gho2lXvUqT1wjTozq8xnrtj1xjZw+h3z9FitmjCMzM4s+o6dQu0olk64RjVbLtOXr+GFUf9ycHekyYjL1gytRyitPW/j6sHJyQ6wsLdi86yBz12xmYv8euDjas3TCMCzMzUlJS6P94HHUr1YZVyeHv6mxcBGzo+TnH9EikiSdkyTJ6DNckqSbkiQZFzZ5QSRJOiBJUutnWxqHVYBEZuR9MqMiQJNF8rED2FSv/YSVDmUxfbRTaV2crPg4AGyq1yb52AF0WZlkRkeSGXkfqwDJJB1xR06RGZf41HJ1m6bcW613chJOnMfc3g5Ld1dcm9cjeu9RMuMTyUpIInrvUdxa1DdJw6Ubd/F2c8bL1QlzMzNa1KjIgXNXDGxsiuWuapiangHZo2BlfUrg5mAHgH8JN9IzssjIzDJew/1YvJ1s8XK0xVylokVgSQ5cu/Nc+x4Lv08tPw/si1liV8ySWn4eHA2/b7SGoqLj0u1IvF0c8HK2x9xMRcug0hy4fD2f3bydIXRtXA1Ls9x7/3KebrjZ2wAQoHYiPTOLjCzj+0O+FkqJEh54eLhjbm5Owwb1ORZywsDGXa2mlJ8fCkX+IdEqQZWxLmaao5mXa9dkPEqUwN3DA3Nzcxo0aEjI8WMGNiEhx2na7A0A6tVrwPnzZ9HpdJw5cxpfPz9KldKPRtjZ2ZnkhF8JC8fLww1PdzfMzc1oVq8WR06eMbDxcHMlwNcH5RPDwzfv3iOovISZSkUxK0v8fb0JOXvBaA2POXvyIHUav4VCocBfqkjKo4ckxEUb2CTERZOa+hB/qSIKhYI6jd/i7MkD+kKFgrRU/aqcKSkPcXByMar+0GtXcS/hibtHCczNzanfoDEnn+iPEyHHaNKsOQB16zXkwvkz6HQ6AEKOHUHt7mHgtJvCldBwPD3UlMjuk6b1anHkpOFo5OM+Kej8fMyB4yepVbUyVpbG37D/FXYdL3c3PNWu+vOibg0O/XnWwKZahbI5xw4sXYqo2PicsuqVylPc6sVXi30RHSfOX6Z65UDsbW2wsylO9cqBhJy7ZLSGK2HX8XJX51wjTevV5PATGvT94Z2vP27cuU9Q+TI510hASS9Czl40WgPAX2E38FJnt4WZGW/UCebQn+cNbIIrSFhZ6kfDKpT2Iyo2AQBzMzMszM0ByMzMQqs1Pqj2ulEoFS/179/AP8IJl2U5SJbl1MLWUZiYOTmTGZv745UVG4OZo+EPUszG1djVb0Kp+avxGj6eyB/n6fd1dCErJnffzNgYzJxezbLwViXUpN7NXb457V4EVp5qrEqoSbuTZ/vdSKxKqAs6xDOJik9C7Wif817taEd0fP6I+s/7Qnh7xAxmb9rJ0E/eyle+5/Rlypb0wMLc+AGhqOQU3O1yoy9q2+JEJec/Rfdevc0Hi7czeNNBIhIf5dnXOndfO2uiklOM1lBUdEQlPcTdwSbnvZu9DZGJhsuZX7kbRURCMg3K+T31OHsuhlHO0w0LM+P7IyY2FleX3OvB1cWF2NhYo4/zosTGxuDq4prz3sXFNZ+O2NgYXF31NiqVCmvr4iQlJXH/3l0UKPjm6xF81bc3mzYapps9L9Gx8bg5517frs5ORMfF/80euQT4+nDi7EXS0tNJSErmzKUrRMXEmaQDID42Cifn3OvcydmN+Cec8Pi4aBwNbNTEx0YB8Em3wWxYOYtBn7Viw4pZvNexr1H1x8bG4JKnP5xdXImNjTGwiYuNwcVVP4qmUqkobl2c5KQkUlNT2bJpPR+3/9SoOgsiOi4ONxfDPomJfb4+ycvew8dpWu/J4MvzakjAzcUp572bsyPRcQlPtd++7wi1q7z8GNaL6IiOjUft7Ji7r5Mj0Sa0Y3RcvKEGI46T/xq5SpSJ3zVRcQmGn8fZkej4p7fFtv1HqR0UmPM+MiaODkPG8Xbv4XR6p0WRjoILCqbQ01EkSfoCqCTL8peSJNUATgA1ZFn+U5Kk+cA5YBFgK8vyQ0mSbgI/AW8AHsB0WZbnZh+rPjA/+9AHyYl/PrXuLkAHIBUIACKATrIs38suHwa8h76d7gGfy7IcIUlSU2ACYJVdNlGW5fUFHP9jYBDwrizLd01oHqOwq9uIxIO7if9tM1aly+HRZyg3B3/xqqstsnzUpBYfNanFjhPnWfrbAcZ3z80RDr8XyZzNO5k/oMsrq79haS/eDPTFwkzFptPX+GbbUZZ0av7K6iuqOrRaHdO3H2bcR2881SYsIpZZvx9l4edtX5uuooZGo+Gvvy7x/ay5WFpaMmrkMAJKlyYoqMpr01AjqCJXwm7Qc8R4HOxsqVAmAFUhRpz279zIx90GEVy7KSeP7uLHeeMYMnbBa6l7/ZqVtGn7PsVewgjJyyAmLp7w23eoWaXSK6/rf4eOczX8JvPHDX3ldf0TdOSlZlAFroZd54uRE3CwsyNQ8kf5GtIsdhwO4Ur4LRaOGZSzTe3ixJppo4mOS2Do9AU0qVkN5+yR3qKImB0lP0UhEr4XaJr9uilw/In3ewvYx1qW5dpAI2CKJEk2kiRZAuuBvrIsVwQOAT4F7Psk9YAhsiyXR++4zwaQJKkj4A/UkmW5KvAHMCN7nzNAPVmWqwDNgOmSJDnmPagkSUOBz4BmL8MBz4qLxdw5N6Jj5uxCVrxhRMe+cUuSjx8CIC30CgpzC1S2dmTFx2CWJxpk7uxCVtyriRKm3Y+kmFfuQ01Wnu6k3Ysk7X4kVt55tnupSbsfaVIdbo52RMbnpsRExifh6vj0L54W1Q3TVSLjEhk4fy3ju72Pt5tpIwJuttZEJOVGeyOTH+Fma/hj7WBtiYWZPp3g3SoBXImIy7NvbsQ5MikFN1trTKEo6HCzsyEi4WHO+6jEh6jtc6Pzj9IzCIuI5bOFm3lz0o9cuB3BVyt+4/Idff9HJiQzYOXvTPi4Od4upkVyXJydiY7JvR6iY2Jwdn41oz1/h7OzC9F5Rp1iYqLz6XB2diE6Wm+j0WhISXmEnZ0dzi4uBFaoiL29PVZWVgQHVyc8LNRoDa7OjgaRuejYOFydHP9mD0M6v9+GFd9PYNaYYejQ4V3Cw6j69/6xgW8HfMK3Az7BwdGFuNjc6zwuNgpHJ1cDe0cnV+INbCJxdNZHpo/t/41qtZoAUL3OG9wIvWyUFmdnF2Ly9EdsTDTOzoYjiE7OLsRE6yPvGo2GRymPsLWz45p8hZXLF/N5l/Zs/3Uzm35ey+/bTXuY3NXJiagYwz5xcX7+PgHYf/QEDWoGY2bCSJFeg4PBqEZUbHyBkdOTF/5ixebf+W5435x0h5fJi+hwdXYkMk/EOiouHlcj21GvwdFQg5HH6fx+G1bOGM/sb4eADrw93J+9UwG4OTkYfp7YeFwdC2qLK6zYsoPpQ3sX2CeuTg6U8i7BuavGf1+8TkQ6Sn4K3QmXZTkMKCZJkhd6p3sk0FSSJG/AUpbl8AJ2W5+9700gHvACJCBFluUD2WUbgKcnL+dyRJZlOfv1UqBJ9us26B3sM5IknQO+BHyzy1yBTZIkXQJ2Ak7Z9T9mDFALaCXL8vNoeCZp4TLm7p6Yu6pBZYZtnUY8PBViYJMZE4V1hSAALDy9UZpboElK5OGpEGzrNEJhZo65qxpzd0/SwuSCqnlhorbvw7OjPprpULMyWUnJpEdEE73rCK7N6mHmYIeZgx2uzeoRveuISXUE+npyOzKWe9FxZGZlsfPkRRpVLmtgcysy1yE7fOFajrOdnJJK3zmr6NeuOUGlS2IqgSWcuR2XzL34ZDI1GnZevkXDMoazekTnSe04eO0ufi76FJo6/iU4fv0+SanpJKWmc/z6fer4l8AUioKOQG81t2MSuBuXSGaWhv+dC6Vh+VI55bbFLDk4tgc7RnZlx8iuVPJxZ3aX1gR6q0lKTafP8u181aoOVfxMawMAqUxp7t27z4OICDIzMzl46DC1a5o+Y4GplCkjcf/+PSIiHpCZmcmhQwepWcswfaBmzdrs3bMbgCNHDlGpUhAKhYJqVYO5dfMmaWlpaDQaLl26aPBA5/NSNqAUdx5Ecj8ymszMLPYcCaFu9eeLpms0WhKTkwEIu3mb8Jt3qB5kXEpC01YfMnbmOsbOXEeVmo04tv93dDod4fJFrK1tcHjCCXdwcqVYMRvC5YvodDqO7f+dKjX0szw4OLoiX9bnTl+5+CdqD+NmzildpiwP7t8jMrs/Dh/aT41adQxsatSszb49uwA4euQglSpVQaFQMHnabJasWMuSFWt5+533eP+j9rz1tmkjNWVLl+LugwjuR0aRmZnF3iMh1Ktezahj7DlyjGb1TUtFASgX4Gd4Xhw9Sf3qQQY28vVbfLfoJ6YN74uT/auJqL6IjpqVAzl5/jJJDx+R9PARJ89fpmblwCereCZlA/y4m0fD3iMnqBdszDWiDzqE3bxD2K071DDyGnlMOX9f7kREcT8qhsysLHYfO0WD4MoGNvKN20xZupppQ3sbtEVkbDxpGRkAJD18xHk5jJIlTLsZEBQehZ6Oks0+oDWglmX5gCRJc4G3srcXRFqe1xqe/jl0L6BJAUyQZXl5AWULgG1AO1mWdZIkXUOfmvKYEPTpMiWBl3NrqtUStXweXiMngVJJ4oFdZNy9hfMHn5J2/RqPTocQvWox7l/0x/GtdqDT8WDBdAAy7t4i+fghfGcsBq2GqOVzTZoZBSBo1QycG9bAwsWRJjcOEjruBxTZOdW3F68nasdBXN9sSKOru9GkpnLhs5EAZMYnEjppPvWObwIgdOI8MuNNuz8xU6kY1r41vWetRKvV8k7davh7qpm/dQ/lfT1pFFSOn/ed4MSVcMxUSuysizG+23sArN8Xwp2oWBb/tp/Fv+0HYMGALjjZ2fxdlfk1KJUMb1mDXuv2otXqeCcogABXB+YfOEf5Es40KuPNuj+vcuDaXcyUSuyKWTDubf2Pv30xS3rUr0SH5fqn7nvUr4S9CTOjFBUdZiolI9o2oteSX/VTRtYIJMDdmXk7Qwj0cqNRYKmn7rv+6HluxySwePdJFu8+CcCCHm1xtjEuIq9SqejT6wtGfjMGrVZLizea4VvSh5Wr1lCmdAC1a9VEvhbK2AmTSH74kJCTf7JqzVqWLNA/NzFw6HDu3LlLaloa7T/tysCv+hJcrarRbaFSqejZqw+jvx6pnxKveQtKlvRl9aqVlC5dhpq1atO8RUtmTJ/K5927YGNry7Bh+mvExtaWtu+2Y2D/vqCA4OAaVK9h/I2EmUrFwM8+ZeC479BqdbzVtAGlfLxYum4zZf39qFejKldCrzNy6mySHz3i6J9nWfbzL6yePZksTRZfjpoIgHWxYozu3xMzEx4OfUylavW4cPoow3u9g4WlFd36jskp+3bAJ4yduQ6Ajl8MZ/mcMWRkpFGxal0qVtVPO9e599esWzYdjVaDubkFnXt/bVT9KpWKHr36MubrYWi1Wpo2fxOfkr6sWfUjAaUlataqwxstWjFz+mS+6N4JW1tbBg8zro7nwUylYsDnXRg0diparZa3mjbEz8eLpWs3UTbAj3o1qnElNJxRU2eS/DCFY3+eZfn6zaya8x0AD6KiiYqJIygw//SOxmgY9FkH+k+YqZ8msUk9Snl7snj9Vsr5+1K/ehBzV20kJS2dUTP0KT9qFyemDe8HQM+vp3Dr/gNS0tJp02MwI3t3oZYJzueL6LC3taHre63pNnwCAN3efxt7W+O+ux9rGPBZRwaOn45Gq6V1k/qU8vFkybotlA3wo371KlwJu86IqT/or5FT51i6/hfWzJ5EliaL3l9PAsC6mBWjv+ph8jViplIxuNvH9Js0Wz9VYqO6lPIuwaIN2yhXqiQNgivzw+rNpKSlM3KmflYgdxcnpg/9kpv3HjBn1Sb0roqODq3fIMDH82/rK2zE7Cj5UTx+CrwwyU79mAD8T5blnpIkLQJaAKNkWV4jSZIOw5zw1rIsX8re9yZ6Bz4UCAc+kWX5sCRJ7wMbgYqPbQuotwv6HPLKsiyHSpL0NRAky/L7kiR1Ar4C3pBlOT473aWsLMvnJUk6DYyTZflXSZLeQB8Nb5J9A3EAmA6koM9lbyvL8nONocoftSj0zgjbcrOwJQDQeN+EwpaA4uarGS34J6KwN37I91UQWb5ZYUsgQ/HiM0S8DBzSIp5t9Iq5pjA+CvkqcLZ8+sNsrwun9MLvDwAzTdqzjf4jaBWm30C+LMyy0gtbAgAOQY0KPX/j6gfNX6qPU3bjrkL/TC9KUbkt2Yc+avw4/3tv9vunRcLzIctyOvAJMF+SpAvo88Vv/+1Oeo6iz+n+C30qylfZx1sFrAEOZh/vNPB4VYDh2fucAz4E8s3hJcvyPqALsE2SpNf3ZJVAIBAIBAKBoMhTJCLhhUV2JLy1LMvvP8v2dSAi4bmISHjRQkTCcxGR8FxEJDwXEQkveohIeC5FIRL+sn0c6eedhf6ZXpSikhMuEAgEAoFAIPiX8m+Z0eRl8p9wwiVJOkX+zxoiy3JPYMXrVyQQCAQCgUAg+C/zn3DCZVkOLmwNAoFAIBAIBP9VxOwo+flPOOECgUAgEAgEgsJDrJiZH3FbIhAIBAKBQCAQvGZEJLwIUfLTdwtbAt59Xv9S3wWxv8nLXzDDWCp2LxozPyTejX+20SvGyr5YYUsAYF/nLwtbAkVlRLWeX+F/fVtri8ZMHGla0xa7epkkWro+2+g/goqswpYAgE5R+JFXu9TowpZQZBAPZuan8L/FBQKBQCAQCAT/agozJ1ySpDLASsAZiAU+lWU59Ambn4BKeTZVQr/g4jZJksYAvYH72WVHZVl+4aiQcMIFAoFAIBAIBP9mFgLzZFlenb1K+yL0CzTmIMvyp49fS5JUGf2CkTvzmPwky/LglymqiAysCgQCgUAgEAj+rSiUipf697xIkuQGVAXWZW9aB1SVJOnvcsi6A2uyV2N/ZYhIuEAgEAgEAoHglfKyc8IlSXIAHAooSpBlOe8yut7APVmWNQCyLGskSbqfvT1f0r4kSRZAe+DJJZo/liSpORABfCvL8vEX/QwiEi4QCAQCgUAg+KfRH7hRwF//FzxuW+C2LMvn8mxbCPjJslwJmAb8KknSC89kISLhAoFAIBAIBIJXyit4MHMWBa96nvDE+zuApyRJquwouAookb29ILoBy/NukGU5Is/r3ZIk3QEqAAdN1A4IJ1wgEAgEAoFA8Ip52eko2SknTzrcBdlFSZJ0DvgEWJ39/6wsywWlongB9bNt8m73lGX5XvbrIMAXkF/0Mwgn/B/E0Ss3mbr1AFqtlndrVaB70xoF2u05H8qglb+xdsAnBHq7k/AolUErfuPynUjaVC/PyPeaFLjfc2m4dI1p6/5Aq9XStn41urVqaFC+8cBJNuw/gVKpwNrSgq8/bYt/CTdCLocxZ/MuMjUazFUq+n/Qghrl/E3SUGnJJNxaNSIjKpZDVd4u0Kb8zFG4tWyIJjWN892Hk3T2LwA8O7Wl9IheAIROXsC9VVtN0gBgVb4Kjh92A6WSR0f3kLTzF4Nyhw+6YlWmAgAKC0tUtvbcHdgJAO/5G8m8dxuArLgYYhZMNlmHTdXqlOjRB5Qq4nf9TvSmdQbl5q5ueA0Yjqq4DSiVRK5cQvKpEwblpeevIGrtCmJ+2WCSButK1XDt9AUolSQd2En89o0G5S4dP8e6vH7mJ4WFFSo7e673+BAA54+7UjyoOgBxW9fzMOSQSRoAdDod+zdP5Mblg5hbWNGi4xTU3vnne988vzuPEqPRaTV4+lejyYffolSqOLh1Ktcv7kdlZo69iw8tOkzGytrOaA37Nuo1mFlY8WanKah98mvYNLc7j5Ki0Wo0eAVUo+lHeg3ymR0c+30usZHhdByyEfeSFU1qizOnTrJ00Vy0Wi1vtGjFex+2NyjPzMxg1vQphIddw9bWjsEjRqNWu+eUR0dF0rdnVz7u0Jm2731kkgadTsfKxbM4e+o4lpZW9Oo/Cr8AKZ/d9bCrLJg5kYyMdKoE16Zzj/4oFApWL5/LmZNHMTMzR+3uSc/+IyluY2u0hhWLZ+fRMJJST9Ewf+akHA1denyFQqHg+JF9bFq7nHt3bjHx+yX4ly5rUlucPvUnixctQKvV0rxFSz748GOD8szMDL6fPo2wsFBsbW0ZNmJUTn/cuHGduT/MJjUlBYVCwczZc7GwsPhHagA4deoUCxctQqvV0rJFCz788EOD8ozMTGZMn05oWBh2traMGDECtVpNVlYWs2bPJjwsDI1WS9MmTfjoI9POzVOnTrFo4UK0Wi0tWrbMpyEzI4PpM2YQFhqKrZ1djob9+/axefPmHLsbN24w54cf8Pc37fcs5MwFZi9fjVarpXWzhnRqZ/ibdu7yVeYsX0P4rTuMGdibxnVyf/fn/7SeY6fPo9NqqV65Al9174iiCMyNXkTpCayUJGk0EA98CiBJ0h/AaFmWT2XbdQa2y7L85AIdkyRJqgZogAygU97ouKkIJ/wfgkarZdKWfSzq2Q61vS3tZ66lUaA//u6GKUmP0jJYc/gsFX1yf0wtzMz48s06hEXEEPYg9oU0TFmznQUDu6J2tKPDhIU0DCqHfwm3HJs3a1big0b6L4kD567w/c87mDegMw621szq1xE3BzvC7kXSe+YKdk0fZpKOuyu3cHP+aoKWTy2w3LVlA4oH+HKgXHMcalamwtwxHKv7IeaO9pT5ug9Har2HTqej/oktRG7fR1ZCkvEiFEocP/mcqNlj0cTH4j7iO1Iu/EnWg7s5Jgkbf8x5bdOoFRbefjnvdRkZREwcZHy9T6JUUqLXV9z4eghZsdH4z1xI0oljpN+5lWPi9lEnEg8fIG7HNiy9S+I7Zgpy99ybfI/PevPw9ImCjv58KJS4dunNvcmjyIqLwWf8LB6dCSHjXu5IX8zqJTmv7Zu/jWVJ/Q+WdVB1rHwDuD2yDwpzc7xGTSXl/J9oU1NNknLjr0MkRN2k2+hdPLh5nr0/j6H94I357Fp3nY1lMRt0Oh3bl/Xj2tn/UbbaW5SU6lL/7UEoVWYc+nUaJ3cvosE7Q4zTcPkQ8dE36T5Gr2H3+jF0HJpfw9vdczVsW9qPa2f+R9ngt3ApUYZ3evzArnXfmtQGABqNhkXzZzN24jScXVwZ0r8XNWrVwdvHN8dm984d2NjYsnDZag4f3MdPyxczZMTonPLlSxZQNbjgG/3n5dyp4zy4f5dZi38mTL7M0vnTmfj9knx2y+ZNp0ffYQRIgUwZM5hzp0OoElybikHV+aRzT1QqM9b8OJ+tG1fRoWtvIzWEEHH/DrMXrydUvsyyp2hYOm8GPfoOpfQTGrxLlmLQyEksmfudye2g0WhYMH8uEyZOwdnFhQH/Z++845uq3j/+TtK92zRJJ7RAe9kULFCkUGTrV3HhQFyAA1REEFkuBEFEpggoG0FRQRFFARWEssqQPXope5S2adIFXWmS3x8JadMWznM/tgAAIABJREFUaMpo9Xffrxcveu95zj2f3JE89znPOeetwbSNa0edOnVtNn9sWI+nlxfzFy5hy5a/WbJoISNHv4vRaGTqZ58ybPgI6tWrT25uLgqF4l+p4ZqO2XPmMHHCBAIDAxny1lu0jYujbp06ZXRswMvLi0ULF7J5yxYWLVrE6NGj2bp1KwaDgblz51JYWMirAwfSqVMnNBqNwxrmzJ7NhIkTCQwM5K0hQ4hr25Y6dUvPxYY//sDLy4uFixaxZfNmm4b7Onfmvs6WQNaZM2cYP25ctR1wo9HEtPlfM/3DEaiVAbw04kPiW7ciMjzUZqNRKRkz+GVWrFlnV/dwcgqHj6ewdNoEAF57dzz7jybTqmmjamm5G9TkPOGiKCYDbSvZ/0C57QnXqf/CndD1nx6YKQhCjCAIT1bBrpN1xOttO2aZ4+69ueXNOXI+jfBAP8KUfjg7KejZUmDzkVMV7Gav20G/zrG4Ope+X3m4OtOqXiiuTrf2znXkzEXC1UrCVAE4OznRo00zNh84bmfj5e5m+7ugqBisL+UN64Sg9rNEFOuHqCkqLqHYUL1V1fTb9mLQ51y3XNOrC5eWWyLc2bsO4uzrg2uQClX3eLQbt2PIyqEkOxftxu2oe3SolgaXiAaUZFzGmJkOxhLy92zDo/n1HRbP1vHk791WrbZuhEd0Q4ovp2JIv4y5pIScxE34xLW3szGbzcg9PABQeHpi0Gfaynzi2lOcdpnC82errcGtfjSG9FRKtGlgLCEvKRHPe9pd1967XQJXdlrS6FxC61CQfARMJsxFRRRdOINH89hqazl1eCON2zyCTCYjJDKGooJcruRkVLBzdfcCwGQqwWQ0ILPeqBGN4pErLM9JcEQMV7IdD3ScPLSRJm0d02AsMYA1gqUMqk+App7D7ZYl5UQywSGhBAWH4OzsTHzHzuzaucPOZnfSdu7ravnauzc+gUMH92E2mwFI2rENTVCQndNeHfbu2kbHzj2RyWRENWxK/tU8ssrcfwBZ+kwKCq4S1bApMpmMjp17sjdpKwAtWrVFYb0eUUIT9JkVz+PN2LNrq01DdMOmXL165boaosto2GPVEBYeQUhYncoOXWVOnBAJDgkhKDgYZ2dnOnZMIKnc9UhK2kmXrt0AiI/vyMGD+zGbzezb9w8RkZHUq2dx9Hx8fKrlANcGDRYdJwgJCSHYqiOhY0eSdtpPMrEzKYmuXS0TU3SIj+fAwYOYzWZkMhmFhYUYjUaKi4txdnLCw/rddisaOiYksDMpyc4maedOm4b4Dh04eOCA7fm4xpYtW0hIsO8NdoTjJ08RFqwmNEiNs7MTXePj2LZ7n51NsFpFg4g6yMulcshkUGQwUFJSgqHEQInRSICfY712dx2Z7Pb++w/wn3bCgRigKg5zJ6BKTrgDx7ytZORcIcivtBtW7edFes4VO5vjF9NJy86jY+Nb+wG/roasXDT+vrZtjb8P2qyKUeTvNyXx0OipzFy1gRF9/leh/K9/jtKwbjAuznemI8YtREPBxVLnqfBSGm6hGtxCNBReKLP/YjpuIY5FUK6h8FdizCrtVSjJ1qHwD6jcNkCFU6CGwuTDtn0yZxc0oyejGTEJ9xbVjzY6KQMxaEsdE0OmFmdloJ1NxrdL8L+vGw2X/EDE2EmkfjkLALmbG6refchYsbTa7QM4BSgp0ZU6NSX6TJz8Kx807hSoxlkVRP7RgwAUnz+NR4t7kLm4IvfywaNxc5zK6XeEK9npePuX9gJ5+QVxJSe9UtsfZw/gy9H34uzqSVTLHhXKjyb9SETjjo5ryEnH269Ug7dfEFeyK9ew6osBzBl5Ly5unkRXoqG66HWZBAaW9lApAwPR67QVbVQWG4VCgYeHJ3m5uRQUFLB61Xc89cytB370Oi3KMjoClOpKdGgJUJa1UVWwAdj852/ExF7/5e56ZOky7TQolWr0OnsnXK/LJEBZOmVwgFJNVjmbW0Gny0QVWHr8wEAVOp2uoo3KYnPteuTm5pJ66SIyZLz/3miGDH6NVSurlzJWGzQAZOp0qAJLn/HAwMBKdOgItNPhQW5uLvHx8bi5ufFM3748/8ILPPb443h7O5aeBKDLzLQd/0Yaruksq6EsiVu2kNCpk8PtX0Ory0KtLP2uVCkD0OrLZ0FUTlMhilZNG/HwgDd5eMCbtIlpRkRY6M0rStQqamU6iiAIjwMTgAJgpfXvZsBmURQDrTYRwF5RFAOtE7F/C1zzqP4CPgbGAT7WhPxEURTfrKStZlhyheSCIHQFvhNFcZIgCM8D7wBm4BTwKpZcoArHFAThG0AAXIGTQP9K8onuKCaTmSlrEhnXp6rvEneOpzrH8VTnONbtOsiCtZsZP6C3rezUpXQ+/3EDc4a+WHMC7zIesfHk79sJZpNtX+q7r2LM1qMI1KAZ+hGGS+coyazcUbtV/BK6kLVxPZmrV+LRsDHhb48m5fX+qJ95kcyfV2EqLLwj7VaGd1xHruzeZjsX+Yf341ovmvCxUzDm5lKQkgwm002Ocnt4/PWFlBiK+H3pcC6cSKJuw9IehF0b5iKTK2gU2+uOauj9hkXDb0uGc15MIqJR+5tXusN8980SHnqkN+7u7jUtxcbq75eiUCiI71Tz3293G6PRyLFjR5g24wtcXV15d8xIGkRFERPT8v+VBgBRFJHL5XyzfDlXrlxh+Dvv0DImhuDg4LuqAyA5ORlXNzciIiLuetsAFy+nc+5iKj/NnwHA0I8+5eAxkRaNK453qC3c7oGZ/wVqnRMuCIIGmAfEiaKYIgjC0CpU6wucEkWxq/UY/qIoZlkT8B8URbH39SqKonhYEIQvAa9ry5EKgtAUmATcI4riZUEQxgOzRFF86jrHHCKKYqa17sfASGCUwx/+Bqh9vUjLzrNtZ2RfQePrZdu+WlTMybRMXpq9CoDMvKsMWfgLMwf0okl4UIXjVUuDvw/pWaVpIOlZuaj8r9/91aN1MyYu/6XUXp/DsDnfMr5/b8LVtzy95nUpTE3HPSyIa29BbqFBFF5KpzA1nYCE0qizW5gG/Zbd1WrDmKVDUSba6+SnxJilr9TWM7Y9+u/sc1CN2RZbY2Y6hSeO4FynXrWc8BJdJs6q0iifc6AKQ7kInn+3Bzj74QgA8pOPIXdxQeHji4fQCN/2CQT1exWFpxdmswmzoRjdWscGq5bodXbRa6eAQEqyKh974NUuAe2SOXb7stZ8T9aa7wEIen0ExZcvOdT+gcRvOLzDEpnT1GlGXlZpb8eV7DS8fK/f2+Hk7EqDZl04eWijzQk/mvQTp49spvfgJVUe5LR/yzcc2m7REFS3GXll0ljystPw8ruJhuYWDbfLCQ9QBpJZJnVDl2kf6bXZaDMIDFRhNBrJz7+Kt48PJ8RkdmxLZOmir7h69QpymRxnFxf+99CjVWp7w9of2bTB8tzXj2qErowOvS6jEh0q9LqyNlo7m81//ca+3dt5b8LnVb4eG9b+yMYNv1aqQafLIKBcb0uA0r6nQK/LwP8WemTKo1QGos0sPX5mphalUlnRRqu1ux4+Pj4oAwNp0rQZvr6WXsjY2NacOpnisANcGzQABCqVaDNLv6MyMzMr0aEkU6tFFRho1ZGPj48PmzdvJvaee3BycsLPz4/GjRuTkpLisBOuDAwkU1v2XFSuQWuNmJfVcI3ELVvodAupKAAqpT8ZZSLwWp0eVYB/leom7tpLk+j6eFhTQONateCIeLKWO+H/9eQLx6mNZ6QtsE8UxRTr9qIbGVtJAu4XBOEzQRAeBK7crMJNuA/4XRTFy9btr6i4clJZnhcE4R9BEA5jWWUp5hbbr0CT8CDOa7O4qMvBUGJk/X6RhKalaSfe7q5sGT+Ide8PYN37A2heN/i2OuAATSJCOZ+u45JWj6GkhA27D9Ophf1MAefSS79ctx46YXO28/ILGPz5Mt58rDsxUXW5k2T8uonQZx8BwK9tC0py8yhK06L9YxuqrvE4+fng5OeDqms82j+ql6ddfO4kzupgFEo1KJzwaB1PwaE9FeycNKHIPb0oPl06k5HMwxOs+flyT29c6zfEcPl605XemPwTybiGhOKsCULm5IRvx87k7rLP8zRo0/Fs0QoA17A6yJxdMOZkc3rkEMQBfRAH9CHzl1Vof/jGYQccoPD0CVyCQnBSaUDhhHdcR67+k1TBzjk4DIWnF4UpZcYRyOTIrbNduIRH4BIeQf7hfRXq3oiYjn15btQanhu1hgbNu3Js98+YzWZSzxzAxc0bL1+1nX1x0VVbjrbJWMLpo5ttOdhnjiWyZ+MCHn5lLs4uVY8Et0zoywtj1vDCmDU0aNGVo7tKNbi6V6KhsJyGI5tvOQ+8LFHRDbmceon0tMsYDAa2JW6iTZx9Kkebtvfy919/ALBj2xaaNW+JTCbjk89mMn/JCuYvWcFDDz9O76eeqbIDDtDjwcf5dNZSPp21lNh2HUnctB6z2UxK8hE8PLzwD7B3bv0DAnF39yQl+Qhms5nETeuJbRsPwIF/kvj1x29554NPcXVzq6y562qYPGsJk2ctoXW7DjYNJ26i4UQZDa3bVm+8SGVERwukpl4izXo9EhO30Lbc9Wjbth0b//oTgG3bEmnePAaZTMY9rWI5d/asLRf6yJHDdoMp/00aLDqiSU1NJS0tDYPBwJbEROLi4uxs4tq25a+//gJg67ZttGjeHJlMhkqt5uBBSypbYWEhycnJhIeH37KGxC1bKmhoGxdn07Bt61aat2hhewk0mUxs3bqVjrfohDdsUI8Ll9NJTddiMJTw17Yk2reu2ouNJlDJ/mPJlBiNlJSUcOBoMnXDQm5Jj8Tdp9ZFwm9ANvYvDbZvZFEUdwqC0BLoBjyHJQodfzdECYLQARgE3CuKolYQhGeAV253O04KOaMf68ygeT9hMpl5pE0TGgQFMnvdDpqEa+jU9Majs+8fv5ArhUUYjCb+PnKKL199rMLMKjfXoGDkMw/y2oylmEwmHm5/D/VDNcz5+S8aR4TSKaYR32/axa7jp3BSyPHxcGd8/8cB+G5TEhcydMxb+zfz1v4NwNyhLxLg43WjJislZtlUlAltcAn0p/OZLaSMm4XMml9+ft53ZKzbgur+BDol/4mxoIBDL40BwJCVQ8rEOcTvtPQWpEyYjSHr+gM8b4jJhP77Bajf/MAyReGOjRguX8D3oacpPnfK5pB7to7n6h57R985KIyAvgPBbAaZjNz1q+1mVXFUR+qXnxM5bjLI5WT9uY6i82dR9+1HQYpI3u4dXF44l9DBwwl85Akwm7k4o/JZZaqNyUTGkrmEjvzYMkXhlj8ovnSegMefpehMClf3WWZe8W6XQN5O+3UNZE4Kwj74zHKYgnzS5k65pXSUyCYJnDm2hUXjuuHk7E6PZyfaypZNepjnRq3BUFTAmnmDMJYUYzabCY9qS4t4y1Rtm1aOx1hSzI+z+wEQHNGCrk+Pc0hDvSYJnDm6hQVju+Hs4k7PMhqWTnyYF8aswVBcwOovSzXUiW5LTAeLhpQDf7Jx5XgKruj5ae6rqMMa0fuNhQ5pUCgUvDxoMB+9NxKjyUjX7vdTp24k3y5bTIOoaNrEtadrjweYMWUiAwc8i7e3N2+PfN+hNqpCy9h2HNi7kyEvP4mrqxsD3xpjKxs5+AU+nWUZj9D/tbdtUxTG3BNny/1e/OU0DAYDE96zLIAXJTThpTdGOKxh/96dDHn5KVysUxReY8TgF5k8awkAA157mznTJ2CwabA4Zbt3bGHxVzPIzcnm04/eoW5kFO+On+aQBoVCwcBBb/DBe2MsU0Z270HduhEsX7aUqKho2sa1o3uPnkyd8ikvD3gRL29vRo606PTy9uaRRx9j2FuDQQaxsW1o3abCJA//Cg3XdAwaNIj33nsPo8lE9+7dqVu3Ll8vW0Z0VBRxcXH06NGDz6ZMof+AAXh7ezNqpGUmrYcefJBp06fz6sCBmM1munfrRmRk5E1avLEGk9Fo07Ds66+Jio62aZjy2WcM6N/fMl3jqNLO7SNHjhAYGHjLaTBOCgXDXnqeYeMmYzKZ+V+XjtSrE8aCFT/SsH4k8W1acTzlNGM+nUne1ats37Ofhd+vZvnMT+jUrg3/HD7OC2+NQSaT0bZlM+Kr6MDXFFI6SkVk5Uf71jTWdJRjQBtRFE8JgvAmMBPwBi4DLUVRPCkIwjjgNWtOeCRwURRFgyAIoVjysj2xLD06SBTFbjdpcxjQSBTFl63bTYE/gFaiKKYJgvARIIii+LQgCI+VPaYgCA8BHwJtAGfgN8BJFMVOgiB0AqaIolil6R4Kf/uyxi+GyefOpYk4wt+d36tpCTQbUHFu55og5+JdHV5QKW6+tSM/eNMLv9e0BGpLj2p8pGNpO3eCQpNrTUsAQEaNf3XiKc+vaQm1BgXVm/nqdmOuBTNo+BRUHGRcE6iatK3xk5H2zrO39UEN+mx5jX+mW6WW/JyUIopiOpaBkr8LgrAfUAEGIB8YAvwpCMJuLIMkr9EJ2GcdLLkOGCiKognYCHgKgnBQEITPb9DsaqC1IAgHBEEYJYriESzR9D8FQTgEtLC2TSXHXI9l4OYJLMuXOtaXLiEhISEhISEh8f+O2pqOsl4UxZUAgiD0A3ZbnepF2OeIfwQgiuJiYHH5g4iimAPce7PGRFE8Q7k8blEUvwa+ruIxK12ySxTFzUD1Jz2WkJCQkJCQkPgPIKWjVKS2OuFvCoLwBBZ9euDlGtYjISEhISEhISFRTSQnvCK10gm3Lhta6dKh1cU6l/gflRT9JIqiYyOvJCQkJCQkJCQkJG6BWumE3wlEUczgDkwdKCEhISEhISEhcRNqy6j2WsT/GydcQkJCQkJCQkKiZqjqYlv/n5BeSyQkJCQkJCQkJCTuMlIkvBZh1mfe3OgOI6sFGqB2zNF9eOHRmpYAQJ0eNb8KWuq+1JqWAEDbsTU/5668FsxJDaDJP1PTEthS0O7mRneBeM+9NS0Bp5LCmpYAgNxoqGkJlLh41LQEAGTm6i/8dbtwya/5dR5qC9Ky9RWRnHAJCQkJCQkJCYk7ijQ7SkUkJ1xCQkJCQkJCQuLOIkXCKyCdEQkJCQkJCQkJCYm7jBQJl5CQkJCQkJCQuKNI6SgVkZxwCQkJCQkJCQmJO4pMJiVflEc6IxISEhISEhISEhJ3GSkS/i9i+6lLTN6wF5PZzKMxDejfvqld+ZqDp5ix8R9U3pbpoZ6OFXisZRQAvxw8xfxthwF4Ob4ZvVrU/9dqAHBr3BL/J/uDXM7V7X+Ru2G1XbnfE/1wi7Zok7m4ovD25eKw5wAIn7MSw6XzAJToM8mc+0m1NDSfPxH1A50oztCR2PKhSm0aT38Xdc8EjAWFHBwwitz9xwAIfe4RokYPAiDlk7lcWvZztTQAeLVqTcgrb4BcQdYfv6FdtcKu3FmlJmzoKBSeXiCXk750Pnl7d9mVR81ZQsa3S8hc/UO1NPjH30uDMSOQyeVcXrWaCwsW25W7hgQjfDwW5wB/SnJyOT5iDMXpGbZyhacnrdf+RObGvzn58aRqaQAwm80smTeT/Xt34urqxqC3xlCvgVDB7vTJZOZMn0hxcREtY9vx4itDkMlk7Ny2iVXfLuLShXNMmDaf+lENq6Vh8byZ7NubhKurK69fR8OpkyKzrRpaxcbRz6bhb36wavhk2rxqadi5/zAzFq/AaDLTq0sHnn/0AbvyFb9u4JeNW1HIFfj5ePHu6/0IVgUC8Nvm7SxZtRaAF3s/yP86tXe4/WuYzWZ+XTYR8WAizq7uPPHKREIjGtvZFBcV8M2soegzLiCTy2nU8j7uf2oYACWGYn74ahSXzhzFw8uPPm9MI0AV6pCGpH2HmLloOSaTiQe7JvDcY/bP6oGjyXy+6BtOnbvA2GGvcd+9bWxlc77+np3/HADgxScepkt8XHVOAwA7Dxxh+uLvMZlM9OoSz/OP3G9X/u3aP/ll4zYUCjn+Pt68O+gFglVKTpy9wOT533C1oAC5XM6Ljz1At3tbV1PDUaZ+vQqTycTD97XnhYe725V/89tGfvl7Bwq5HD8fL95/9VmCVUpb+ZX8Ap5+52MSYpvzTr+nqqUBIGn/YWYs+hajycRDXTry/GP/sytf8csGft2YaNHh682Y1/oTrLbcn7//vY0lq34F4MXeD/HAffHV0nArz8hbH0/n6IlTNG8YxdQxQ6rV/jV2HEpmyvI1GE0mHkloS7+HOtuVL1+3hZ+37EKhUODv7cmHLz1JcGAAAJ9/v5ZtB44D8NLD3egeV8sXBZfSUSogOeH/EowmE5+s282Xfbui8fGg78J1JESHUV/lZ2fXvXEEo3u2sduXU1DEV1sP8e2AB5ABfRb+TqfoMHzcXf91GgCQyfHv8zIZMz/CmKUjaPRk8g/toeTyRZtJ9spSJ9Cr0wO4hEfats3FxaRNeNvxdstxcelPnJ2znJhFn1ZarurZEc8GEWxu1B2/ti1o+sVYdrR/Emd/X6Lfe4NtcY9jNpvpsOsn0n/dREl2ruMi5HJCBg3hzHvvUKLTUn/6l+Tu2kHRhXM2E/VTz5GzdTP6db/gGl6XiLGTEAf0sZUHv/QaV/7ZVdnRq6wh6v3RHBowkKL0dFr98A26v7eQf+q0zaT+O8NIX7OW9DW/4te2NfWGvUnyyPds5RFvvk723n3V12DlwN4k0lIvMHPed6SIR1k4ZwoTps2vYLdg9lReGTyCKKEJk8YO58A/SbSMbUd43Xq8PWYi87+YXG0N+/cmcTn1IrPmrSBFPMb8OVP5ZNq8CnbzZ09l4OARRAmNmTj2HQ78s4uWsXGE141k+JgJzPvis2q1bzSamLrgG2Z+8DbqAH/6jxpPh9gYIsNL55uPjqzL4k874ebqyk8b/mb2slV8PGwgOXlXWPTDLyz69H1kMhn9RoyjQ2wMPl6e1dIiHkwkM/0cw6es58KpQ/y8+CNe/+j7CnYdH+hH/cZtKSkpZsEn/REPJiK06MieLT/i7unDO1M3cHDn76z/firPvDHNoXMxbf7XTP9wBGplAC+N+JD41q2IDC915DUqJWMGv8yKNevs6u7Ye4ATp8+yeNrHGAwlDH5/InGtWuDp4e7weTCaTExZ+C2fvzcUtdKffqMn0iG2BZFhpddEiAhnyaQxuLm68uMfm/li+Y9MGPoKbi4ufPBGP+oEa9Dqs3lx1MfEtWiCt6djc3EbTSYmL/6BL8YMRq3044V3J9PhnmbUCwu207B0wkjcXF1Y9Wcis779mYlDBtjKv1q5lpiGDRz+/HY6jCamzF/GzA+Go1YGMGDkODq0jrG7JtGRdVg0+QPL/bl+E3OW/cD4t18j99r9OfkDkMno/85HxLdu6fD9eSvPCEDfXj0oLC7m5z+23Nq5MJmY9PVq5ox4BU2AL899OJOEVo2pFxpksxHqhrLso7dwd3Vh5cYdzPzuNya98RxbDxwj+ewlvv14GIaSEl6ZOJd7WzTEy93tljTdSaR5wivynzwjgiDECILwZA21fVYQhKY3t3SMI6k6wgO8CfP3xlmhoEeTumw+caFKdXecSiUuMhhfd1d83F2Jiwxm+ynHF1+pDRoAXCIaUJJxGWNmOhhLyN+zDY/mba5r79k6nvy926rV1o3Qb9uLQZ9z3XJNry5cWm6JcGfvOoizrw+uQSpU3ePRbtyOISuHkuxctBu3o+7RoVoaPKIbUnw5FUP6ZcwlJeQkbsInzj5yaTabkXtYfrAVnp4YyizI5BPXnuK0yxSeP1ut9gF8mjel4PwFCi9ewmwoIeP3DSg7d7LX2aAe2bt2A5C9a49duVfjRrgEBpC1fWe1NVxjz66tdOzcE5lMRnTDply9eoWscgtQZekzKSi4SnTDpshkMjp27smepK0AhIVHEBJW5xY1bCPBpqHJTTQ0QSaTkdC5J7vLaAi9BQ3HTp4mLEhNqEaFs7MTXdu3IXHPfjube5o2xM3V8gLcJKoeGTrLgiK7Dh6ldYsm+Hp74ePlSesWTUg6cKT6WvZtolX8w8hkMuo0aEFBfh652fYLLrm4ulO/cVsAnJxcCIloTI4+vUz9RwBo2qY7J48mYTZXfbGk4ydPERasJjRIbTkX8XFs223/shesVtEgog7yclG6sxcvEdNYwEmhwN3NlfoR4STtP+TwOQA4dvJM6TVxcqLbva1J3HPQzqbsNWkaVY8MveWa1AnRUCdYA4AqwA9/Xx+ycvMc1nD05FnCglSEagJxdnKie7t7SNxr/3lim0Tj5uoCQLMGkWTos21lx0+fR5+TR1xzx3tmymK7P23XpA1by9+fzRqV3p/R9W33Z9KBI7Ru0Rgf2/3ZmKT9h6uvoRrPCEDr5o3xdLt1Z/foqfOEq5WEqZWWaxIXw+Z99ovEtW7cAPdr16R+XTKyLL85Zy6l01KoZ7k/XV2JCg9hx6HkW9YkcXf5TzrhQAxQI074nSIjL58gn9K3fY23Jxl5BRXsNiaf54l5vzJ81RbScq6WqVsaNdH4eJCRl/+v1ACg8FdizNLZtkuydSj8Ayq3DVDhFKihMLn0i1rm7IJm9GQ0Iybh3uL6zvut4haioeBimm278FIabqEa3EI0FF4os/9iOm4hmmq14aQMxKAtTeswZGpxVgba2WR8uwT/+7rRcMkPRIydROqXswCQu7mh6t2HjBVLq9X2NVzUaorSSj9PUXo6rhq1nc2V5BMEdusCQGC3zjh5eeHk5wsyGfVHvs2pyVWPbt6ILF0mysDStpVKNXqdvQOs12USoFTZtgOUarJ0t2+lWL1OW06DqlINyjIaLDa3ZzVQrT4bdWDp86BW+qMt40yV59dN22jX0hI30Oqy0Cj9S+sG+KPVVX/Fv9ysDPwCSqN6vgEacq0OdmUUXM0lef9m6jexpH3k6tPxU1rqKxROuHl4k3/l+p+lPFpdFmplaTqFShmAVl+1z9Mgog679h+msKiI7Nw89h05Tkamvspt2+nQZ6PyH9nEAAAgAElEQVRWlr0mfjfU8eumbbSLqRjLOXryDIaSEsI0qkpq3URDVrb9tVX6oc26/rn8ZfMO2rWwpA6ZTCZmLv+JN/s+6nC7FXTos9CUuT9VAQE3vMfWbkwkrlUzADL1WeXu7QAyq3g97TVU/xm5nWRk5aBRlvYkawL80GZdP7CzJnEX91pfgqLqhLDzsEhBUTFZeVfZe/wk6Tf4DLUBmVx2W//9F6hV6SiCIDwOTAAKgJXWv5sBm0VRDLTaRAB7RVEMFARBDXwLXPNg/gI+BsYBPoIgHAASRVF88zrtjQUaA4FACHAU6C+KYo4gCC7W9hMAV+AQMEgUxSuCIDwDDAFcrIcaLorixkqO/zbwAPCYKIrXf7JuEwlRYdzfJAIXJwWr/jnB+79sZ/5z3W9e8T+moSwesfHk79sJZZYvTn33VYzZehSBGjRDP8Jw6Rwlmdd3DP7t+CV0IWvjejJXr8SjYWPC3x5Nyuv9UT/zIpk/r8JUeOeX2z49eRoN3h+F5pFe5OzdR1FaOmajiZA+T6JP3GaXHy5x91ifuJPkU2eZM25ETUvBaCxhxZzh3Nv9WZTq8JqWQ5uYZhw/eYaBo8fj5+NN0+gGKO7CD/+6xCSOnz7H3LHD7fZnZmXz0axFfPB6P+R3uFt/3dbdHD99ni8/eAuAVX8mcm9MEzsn/m6wfssOkk+dZfb4UXe1XTsNteQZ+X37Pxw7c5H5Y14DoF0zgWNnLtB//Bf4e3vSrEFdFLV99pHarq8GqDVOuCAIGmAeECeKYoogCEOrUK0vcEoUxa7WY/iLopglCMIHwIOiKPauwjE6ADGiKKYLgrAIeB8YDowAckRRbGM99qfAaOBdYAOwQhRFsyAIArARCCtzTLkgCJ8DSuB+URSLq6Djhqi9PUjLvWrbTs+7itrbPjfRz6M0v/rRlg2YsWmfre7ec6VOZnpuPrF1HY+81gYNAMYsHQr/0uiWk58SY1blESrP2Pbov7PPCTZmW2yNmekUnjiCc516d8QJL0xNxz0siGtxGrfQIAovpVOYmk5AQmkE3i1Mg37L7mq1UaLLxFlVGnV1DlRhKBd19e/2AGc/tPyA5CcfQ+7igsLHFw+hEb7tEwjq9yoKTy/MZhNmQzG6tY4NEi3OyMA1qDTa6arRUFTOqS7Wajn2piUPX+7hjqp7F4x5efjEtMD3npaE9HkShYc7MmdnjPn5nJn2eZXb37D2RzZusAzUqh/VCF1mads6XQYB5XoGApSBdlFnvS4D/3I2jrJ+7U/8ZdXQIKphOQ3aSjXoymiw2Dge3awMVYCfXcQ2Q5eFKsCvgt3uQ8dY8uNvzBk3AhdnZ0tdpT/7joqldfVZtGpScVDpjdj557fs3rwSgLB6zcjWl/aS5OjT8Qmo/Ln/adGHBGrqEt/zeds+nwAN2bo0fAOCMBpLKMzPw8Or4me5HiqlPxm60l4zrU6PKqDqjuQLvXvxQu9eAIydPofwkOCb1LiOjgA/MnRlr0l2pTp2HzrGktW/M3fscNs1AbiaX8CwSbMY2OcRmkbXq54Gfz/Sy0ScM3TZqPwruS8OJ7P45/V8+cFQm4bDKWc4kHyKH/9MJL+wiBKjEXc3V97o84jjOgL8SS9zf2r1elSVOPd7Dh5l6Y9rmT1+lE1HYIA/+4+Wplxk6PS0bOJ4esytPCO3E7W/L+m60uh1uj4blb9vBbtdR06w8JeNzH93EC7OpW7bgF5dGdCrKwBj5nxDneDb8x0icfeoTa8lbYF9oiimWLcXVaFOEnC/IAifCYLwIHClGu2uFUXxmge2ELg2NLkX8KwgCAesEfVewLXpPOoDGwRBOAp8DwQJghBU5pjXtD97OxxwgCYhSs7r87iUlYfBaGTD0XMkRNtHi7Rl0ju2nLhIZKDlYb63fgg7T6eSW1BEbkERO0+ncm/9EBylNmgAKD53Emd1MAqlGhROeLSOp+DQngp2TppQ5J5eFJ8udSpkHp7gZPkSk3t641q/IYbLVctrd5SMXzcR+qzlR8qvbQtKcvMoStOi/WMbqq7xOPn54OTng6prPNo/qpeznn8iGdeQUJw1QcicnPDt2JncXTvsbAzadDxbtALANawOMmcXjDnZnB45BHFAH8QBfcj8ZRXaH75x2AEHyD18FPe6dXALDUHm7IT6gR7o/rYfsOTk5wcySxSxzssDSPvJ0k7yiDHs6nI/u7o+wKnJ00lfs9YhBxygx4OPM3nWEibPWkLrdh1I3LQes9nMieQjeHh44R9g7wD7BwTi7u7JieQjmM1mEjetp3Xb6uXkX6Png48xZdZipsxaTOt2Hdhi03D0JhqOYjab2bJpPa3bVm+Wh/I0ahDJhcvppKZrMRhK+Gv7bjq0tp81QTx9jslffc1nowYT4Otj29+2RRN2HzxK7pWr5F65yu6DR2nboolD7bfr9gxDJqxmyITVNLmnC/u2rcFsNnP+5EHcPLzx8avoKGxYOZPC/Cs8+Oxou/2NW97Hvm2We+XI7j+o37gtMlnVo9ENG9SzPxfbkmjfumWV6hqNJnLyLLnXJ8+e59TZC7SuJEWkKjSqH8GFyxmkZmRiKCnhzx176BDbws5GPHOeT+cv57MRr9tdE0NJCSOnzOWBju3oHHdPtdoHaFy/LhfSMrhk1fDHzn/ocE+zchou8MmCFUwZPpAAX2/b/vFv9OPXLz5mzazxDHn2UR7o0KZaDjhY7s+LlzPKXJPdxMfaXxPx9Dk+/Wopk0e9aXcu4mKaVrg/46pxTW7lGbmdNK4XzoX0TC5pdZZrknSAhJb2z1vy2UtMWPIj04f2I8Cn9JoYTSay8yxBsZTzqZy8kEpc0+g7ovN2IaWjVKTWRMJvQDb2Lwu20RCiKO4UBKEl0A14DhgF3J5fMpABr4miuKmSshXA26Io/iwIghzIL6sLSAQ6ASrgtvSzO8nljOrZhkErNmIymXk4pgENVH7M2XyAxiFKOkWHs2JPMptPXMRJLsfH3YVxD90LgK+7K690aE7fRZbR/690aI5vNWYlqQ0aADCZ0H+/APWbH1imKNyxEcPlC/g+9DTF507ZHHLP1vFc3WPv3DoHhRHQdyCYzSCTkbt+td2sKo4Qs2wqyoQ2uAT60/nMFlLGzUJmjVKcn/cdGeu2oLo/gU7Jf2IsKODQS2MAMGTlkDJxDvE7VwGQMmE2hhvkAd7sXKR++TmR4yaDXE7Wn+soOn8Wdd9+FKSI5O3eweWFcwkdPJzAR54As5mLMyqfzaXaGI2c/HgSzRbMRSaXk/bTGvJPniJi8CDyjhxD9/cW/NrEEjnsTTCbydn7Dynjqjct5M1oGduO/Xt3MuTlp3CxTlF4jRGDX2TyrCUADHjtbeZMn4ChuIiYe+KIibXkIO/esYXFX80gNyebTz96h7qRUbw73rF89Vax7di/N4nBLz+Ni6sbr79V6lgOH9yPKbMsM/e8/Now2xSFMffE0dKqYdeORBZZNXzy0QgiIhvwngManBQK3n6pL299PN0yLV/neOqFhzLvu59pVD+CDq1j+GLZSvILi3h36lwANIEBfDbqTXy9vej3+IP0H/UxAP17P4Svt5dDn78sQouOJB9I5LPhPXF2ceOJlyfYyma++yhDJqwmR5/G3798hSqkHrPefxyAdt360qZTb2ITHueHL0fy2ds9cPfyo8/rUxxq30mhYNhLzzNs3GRMJjP/69KRenXCWLDiRxrWjyS+TSuOp5xmzKczybt6le179rPw+9Usn/kJJcYSXn/XotfD3Z0P3hqIk0JRrfPgpFAwvH8fhkyYYbkm97WnXngI875fQ8P6dekYG8Os5ass12TaV4DlmkwZ+QZ/7djL/uMnyMm7wm+bLS/Y77/ej+gIx1J2nBQK3nnxSd78ZDYmk4mHOrWjfngIX61cS6PIOnSMbc7n366moLCI0TMXABCkDGDqOwOr9ZlvpGPYS30ZOn4qRpOJBzt3oF6dUOavWE3DBhF0aN2S2V//QEFhEe9NnWM9F0omjx6Cj7cX/Xo/xICR4wDo90QvfKpxf97KMwIw8L1JnEu9TH5hEb1eGc6Y116s1suAk0LBiOcf5Y3J8zGazTzcsTX1w4KY++N6GkeGk9CqCTO/W0tBYREjv1gGQJDSj+lD+1NSYuSlCbMB8HR3Y/zAZ6p9f941pNlRKiBzZKT5ncSajnIMaCOK4ilBEN4EZgLewGWgpSiKJwVBGIfFOQ4UBCESuCiKokEQhFDgJOAJPIIlf7vbTdocC7wCtBBFUSsIwgIgWxTF4YIgvI8lOv+EKIoFgiB4A2GiKB4XBEEHdBZF8aAgCC8B84FIURTPCoJwFngQaIHlpaCHKIpVmgakYNnHteNi1AK02299urpb5fDCozc3ugvU6VG9HoPbif5U9Qfn3U58f/mzpiUgp3Y8pmGFJ2paAlsK2tW0BADiPffWtAScSu782IqqIDcaaloCJS6OTZ94p5CVGQtUU7jk147vTq+2D9V46Dh3xrDb+uXp89a0Gv9Mt0qteS2xpoQMBH4XBGE/liiyAUuUeQjwpyAIuwFjmWqdgH3WdJF1wEBRFE1YcrQ9BUE4aM3NvhFbge8EQUgGAoDx1v2TgIPAHkEQDgHbgEbWsreAnwVB2AfUA3SUQxTFb4CxwEbrYFIJCQkJCQkJif+XyGSy2/rvv0BtS0dZL4riSgBBEPoBu61O9SLsc8Q/AhBFcTGwuPxBrDOR3FvFNi+Iolhh6S9RFA1YBmG+W0nZMmBZmV1jypRFlPn7R+DHKuqQkJCQkJCQkPhvIqWjVKC2OeFvCoLwBBZdeuDlGtYjISEhISEhISEhcdupVU64KIoTsMzNfduwziX+RyVFP4miOPZ2tiUhISEhISEhIVGR/8qMJreTWuWE3wlEUczAsoKmhISEhISEhIRETSAt1lMB6YxISEhISEhISEhI3GX+85FwCQkJCQkJCQmJGkZKR6mA5IRLSEhISEhISEjcUWRSOkoFJCe8FnE15UxNS8AzKrKmJQCQc7HmFzioDYvkAJzfUKW1nu4o6rb+NS0BqB0L5ZioHdGcPPeKy7/fbVwNNb8YSm2hyPXOLG3uKOZacn9KWHGv+e8sidqL5IRLSEhISEhISEjcWaR0lApITriEhISEhISEhMQdRSYt1lMB6YxISEhISEhISEhI3GWkSLiEhISEhISEhMSdRSalo5RHcsIlJCQkJCQkJCTuLDWYjiIIQjSwFFACOuB5URRTytmMBV4Drs2GsF0UxdetZR7AYuAeoAQYLori2lvVJaWjSEhISEhISEhI/Jf5EpgtimI0MBv46jp2X4uiGGP993qZ/cOBXFEUGwAPAQsEQfC6VVFSJPxfhHODpng+0AeZTEbhvq0UbF1XwcalSSwe9z0MmClJu8CVVfMBkPsG4PXwi8h9/cEMuctnYMrWOaxh+6lLTN6wF5PZzKMxDejfvqld+ZqDp5ix8R9U3h4APB0r8FjLKAB+OXiK+dsOA/ByfDN6tajvcPvX8GrVmpBX3gC5gqw/fkO7aoVdubNKTdjQUSg8vUAuJ33pfPL27rIrj5qzhIxvl5C5+od/rYbm8yeifqATxRk6Els+VKlN4+nvou6ZgLGgkIMDRpG7/xgAoc89QtToQQCkfDKXS8t+rpYGAJ+2cdQZMhSZXI527S+kLV9mV+6i0RD57gcovLyQyRVc/HI2OUk7kTk5UfedUXg2bAhmM+dnTidv/75q6zCbzSyeN5N9e5NwdXXl9bfGUK+BUMHu1EmR2dMnUlxcRKvYOPq9MgSZTEZeXi7TP/0QbXoaKk0Qw0aNw8vL22ENS+bNZP/enbi6ujHoOhpOn0xmjlVDy9h2vGjVsHPbJlZ9u4hLF84xYdp86kc1dPg87Nn7D3PnLcBkMtKze3eefrK3XfmhI0f4ct4CTp85y5iR79Axvr2tbMz7H3JcPEHTxo0YP/YDh9sui9lsZvXSTzh+YCvOLm70GTSB8MjGFex++34mexN/If9qLp8u2WPbv/rrTzl5bDcAhqJC8nL1fLJwp0MakvYdYuai5ZhMJh7smsBzj9k/JweOJvP5om84de4CY4e9xn33trGVzfn6e3b+cwCAF594mC7xcQ61XZZd+w4wa/5STCYT/+vWmb69H7YrP3j0OLMWLOX02fN8MPxNOrUvbStdm8nkL74iI1OHDBmffjCSYI26Whq+mL8Eo03DI+U0HOOLBUs5dfY8HwwfYqeh86NPE1m3DgCawEAmvjfC4fZrk47aoAFg5/4jzFi8AqPJRK8uHXj+0Qfsylf8+ge/bNyKQiHHz8ebd1/rR7BKyYkz5/ls/nKuFhQil8t48bH/0bV9m+u0UkuooXQUQRDUQCugm3XXCuALQRBUoihqq3iYp4AXAERRTBEEYS9wP7DyVrRJTvi/BZkMrwf7krN0KqbcLPxefZ/i5AMYtZdtJvIANR4d/0fOgk8wF+Yj8yx1HrwfG0B+4m8YTh0DF1cwOz53qdFk4pN1u/myb1c0Ph70XbiOhOgw6qv87Oy6N45gdE/7L4OcgiK+2nqIbwc8gAzos/B3OkWH4ePu6rAO5HJCBg3hzHvvUKLTUn/6l+Tu2kHRhXM2E/VTz5GzdTP6db/gGl6XiLGTEAf0sZUHv/QaV/7ZVdnR/z0agItLf+LsnOXELPq00nJVz454Nohgc6Pu+LVtQdMvxrKj/ZM4+/sS/d4bbIt7HLPZTIddP5H+6yZKsnMdFyGXU3fYcE4MfZPijAwaL1hM9ratFJ49azMJfqEf+k0b0f78E24REUR/Np1DTzyKqpfFETn6wrM4+fkTPXU6x17qV637E2D/3iQup15k1rwVpIjHmD9nKp9Mm1fBbv7sqQwcPIIooTETx77DgX920TI2jp9XLqdZi3t49IlnWb1yOT+vXM6z/QY5pOHA3iTSUi8wc953pIhHWThnChOmza9gt2D2VF4ZPIIooQmTxg7nwD9JtIxtR3jderw9ZiLzv5hcrXNgNBr5Yu5XTPp4HIGBSgYPfZt2cW2oW6eOzUatUjF86BBW/VTxxeuJxx+jsKiI39etr1b7ZTl+YCvatPOMmf47504eYtXC8Qz9eEUFuyatOhHf/RkmDrV3QB59fqTt78T133Dp7HGH2jcaTUyb/zXTPxyBWhnASyM+JL51KyLDQ202GpWSMYNfZsUa+6DGjr0HOHH6LIunfYzBUMLg9ycS16oFnh7uDmm4pmPGV4uY+tG7qJRKXh0+hvZt7iGiTpjNRh2oZPSQQXy3umIP98QZs3n2iUdpHdOcfKvTVR0NM79axBSrhoHDR9O+TWw5DYGMGvIa36/+tUJ9FxcXFs6o3j1Z23TUBg3XdExd+A0z3x+GOsCf/qM/pkNsDJHhpWtUREfWYfGn7+Hm6spPG/5m9rKVfDxsIG6uLnwweADhwRq0+mz6jRxP25imeHt63LKuO8Xtnh1FEAQ/wK+SomxRFLPLbIcDl0RRNAKIomgUBCHVur+8E/60IAjdgTTgQ1EUr7311wHOlbE7b61/S/yr0lEEQTggCILD34CCIJwVBKHpDcpjBEF4sorHihAE4RUHbDOrqvNGOIXVw6jPwJSVCUYjRYd349KwpZ2NW2xHCnZtwlyYD4D5ah4AClUwyBUWBxyguAgMxQ5rOJKqIzzAmzB/b5wVCno0qcvmExeqVHfHqVTiIoPxdXfFx92VuMhgtp+q3iI0HtENKb6ciiH9MuaSEnISN+ET197Oxmw2I/ewfBkpPD0x6Esvg09ce4rTLlN4/my12q8tGgD02/Zi0Odct1zTqwuXllscrexdB3H29cE1SIWqezzajdsxZOVQkp2LduN21D06VEuDZ6PGFF28SFFqKuaSEvR//Yl/fEd7I7MZhacnAApPLwyZlu89t4hI8vbtBaAkOwtjXh6eDRtVSwfAnl3bSOjcE5lMRnTDJly9eoUsvf0jmKXPpKDgKtENmyCTyUjo3JPdSVtt9Tt16QlApy6l+x3TsJWONg1Nb6KhKTKZjI6de7LH2lZYeAQhYXUqO3SVEE+kEBISTHBwEM7OziR07MCOJPuXvSCNhnqRkcgqiUy1jGmBh7vjjmZlHPnnb1p36IVMJiMiqgUF+XnkZFUMPEVEtcDX/8aLD+3f8Tut7n3ghjblOX7yFGHBakKD1Dg7O9E1Po5tu+17WoLVKhpE1Kng2J69eImYxgJOCgXubq7Ujwgnaf8hh9q36Ug5SWhQECFBGpydnejc4V627d5rr0Ojpn5E3Yo6zl/EaDTROqY5AB7ubri5Oh68SE45SWiQxk7D9t177GyuabiTU8nVBh21QQPAsZNnCAtSE6pRWe7P9m1I3HvAzuaepg1t17tJdH0y9JaF7OqEBBEerAFAFeCHv6832bl5d0xrLeUt4Ewl/96q5vG+BCJFUWwOfAasEQRBeTuEXo9/lRNuzdEpuAOHjgGq5IQDEUCVnPDbidzbD1OO3rZtys1C7mP/AqhQBqEI1OD70ih8Xx6Dc4Omtv3mwny8n34Nv0Ef4tH9iWp1C2Xk5RPk42nb1nh7kpFX8XJsTD7PE/N+ZfiqLaTlXC1Tt/QNXePjQUZevsMaAJyUgRi0GbZtQ6YWZ2WgvdZvl+B/XzcaLvmBiLGTSP1yFgByNzdUvfuQsWJptdquTRqqgluIhoKLabbtwktpuIVqcAvRUHihzP6L6biFaKrVhotKRXFG6bko1mbgrLJ3qFIXLUDZvQctfvqF6CnTODdjKgAFJ1Pwi+8ACgUuwcF4CA1xUVdPB4Bep0UZWNpNr1Sq0Osyy9lkolSqytlYHMOc7Cz8AyzX0c9fSU624yu3Zukyy2lQV6ohoIyGAKWaLN1teV8nU6dDFVh6L6oCA9HpHE89ux3k6NPxUwbZtv0CNOTo0x0+jl6bik57iaimbR2qp9VloVaW/oaqlAFo9VW7pg0i6rBr/2EKi4rIzs1j35HjZGTqb16xEjJ1etSB9joydVU71oXUy3h5evDeJ1MZ8NYo5i5ejtHo+EqlWp0elZ0GJVpd1e/v4mIDrwwbzaB33mVr0p6bV6jFOmqDBgCtPgu1snQ1YnWA/w11/LpxK+1aNquw/2jKaQwlJYRqan4V3Rsik9/efzADiKzk34xyLV8AQgVBUABY/w+x7rchimKaKIoG699/WsuvBXDPA3XLmNcpX786VDkdRRAEM/Ae8AiW0aUvA12BnoAz8IQoiscFQQjCkm/jA7gBv4miOMJ6jAVAniiKQwVB0ABJwKNAW6C5KIqvC4LQBtgFtBFFcY8gCHOAA6IozrNq8BZF8YogCGeBr7Hk+AQDU0RR/MLaTgdgjlX6Frj+Or7Wt5xxgI8gCAeARFEU3xQEoSfwCaDA0l3xqiiKJ7Ek9EdabU+KothbEIQpQALgAmQC/UVRPFdZe3cSmVyOIkBDzqLPkPv44ztgJNmzPwC5HKe6UWTP/QhTjh7vJwbi2rI9Rfu23XYNCVFh3N8kAhcnBav+OcH7v2xn/nPdb3s7N8MvoQtZG9eTuXolHg0bE/72aFJe74/6mRfJ/HkVpsLC/xcaagsBXbuTue530r/7Fs8mTan33liOPP8M2t/W4lY3giYLFlOUlsaVI4cxm4w1LRcAmUwmLQBeS9i/cx0t2nRHLlfctTbbxDTj+MkzDBw9Hj8fb5pGN0BRAyv+GY1GDh1LZsH0SahVgXz02UzWb9rM/7p1vqs6vl8wG5UygNS0dIa+P556dcMJDQ66ecX/oI6a0LA+cSfJp88x56N37PZnZmUzbtZC3n+jP/LavhjObX5+rCkn2VWwy7D6bH2A5db/95fPBxcEIVQUxUvWv2OwBF1Fa/FK4FVgryAIUUBr63FuCUevWLYoiq2BkcAaLNO3tMTiDL97zQZ4SBTFe7BEmGOtDi3AYKCLIAiPAN8An4mieADYCHSx2nQBdpbb3ngdPR6iKLYDOgGTBEHwEgTBFfgOGCyKYjMgEcsbS6WIoqgDPgD+skba37Qm8S8D+lq7Jb616gV4HThmtb022mmSKIqtRVFsgeUFpPIE3VvAlJeN3DfAti338ceUa3/vGXOzKBYPgMmIKTsToy4dRYAGU24WxrQLllQWk4ni5P04Bdct38RNUXt7kJZ71badnncVtbd9t7WfhysuTpYfykdbNuB4mr5M3dLId3puPmrv6uWulegycVaVRhqdA1UYykUR/bs9QM7WzQDkJx9D7uKCwscXD6ERQf1eRVi4gsBevVE92Rflg/YDcv4tGqpCYWo67mGlPw5uoUEUXkqnMDUdt/Ay+8M0FKY6HqEEKNZqcVGXngsXlRqD1j7lQPXgQ2Rt+guAq0ePIHN1wcnXD4xGLsyaydF+z3Ny9AicvLwovHDeofbXr/2J4YP7MXxwP/z9legyS6PyOp2WgHI9FAHKQHQ6bTkbSwTJ18/fljqSpc/Ex8+fqrBh7Y+MGPwiIwa/iF8FDRmVatCX0aDXZeBfzqa6BCqVaDNL70VtZiZK5R3tUbVj2x8r+GzU43w26nF8/FRk60p7XLL16fgGON7TsX/HOlq1v9/heiqlPxllegG0Oj2qgKpdU4AXevdiybSPmTF2JGbMhIcEO6wBIFAZQEamvY5AZcANapSiClTSIDKCkCANTgoF8W1jOXHqrMMaVMoAtHYadKiUVT8XKqvekCANMU0bk3LacQ21RUdt0ACgCvAno0zkO0OfVamO3YeO8X/snXdYVMf3h9+l24FlwS4IOnZRUew9ahKTb3o1if6MJsYYjUZjTezGLtbYNZZo1ESTqDGJBSsq2AsjWGJBOiiCtN39/bErRSCyiEKSeZ+HB/bOuXc+d2b2cu65Z+au+nE70778FDtb24ztiUn3GTJlLh+9/TL1ahZ8oYP/CB8DA4QQlzD5oh8DCCF2CCF8zDaThRDnhBCngaXAe1LKBxew6YCjECIU+BXoK6V87PwfS53wjebfJwBjljUSgwAv89/WwHTzSeXH44IAACAASURBVARhCuV7A5hTSd7AdCcSL6VcaN4eCpQQQlTG5HSPxOSsVwHspZSX89Czwbz/NSAOqAwIIElKuc9c9gOQd9Js7vgCp6WU5iRqVgLeQoi8lkl4VggRIIQ4h2kZG28L63sk6beuYu3shpWjC1hbY1+/GanB2XPHUi+exNbdtAqDpmRprLVu6OOiSL91FY1DSTQlTavp2HrUQh9leT523YparscmcCsugTS9nl3n/6JdzezzEqKypJj4X7qJh0s5AFp6VuTIlTDu3k/h7v0UjlwJo6VnRQpC0qVg7CtWwtatPBobG8q17cjdo4ez2aRFRVCqYWMA7CtXRWNrh/5OPFe+HIjs/Tay99tE/7yZqB/WEfOr5auCFAcN+SHylz1U6mFy8B19G5J+N4GU8Ciifj+IrnNrbBzLYuNYFl3n1kT9XrAnI4nBF7GvUgW7ChXQ2Njg3PkZ4g5lz6VOiYigTJOmADhUc8fKzo70+Dis7O2xcnAAoKxPM4x6fbYJnfmhW/dXmDFvJTPmraRpizb47/kNo9HIpeDzlCxZOiO95AFOzi6UKFGKS8HnMRqN+O/5jaa+rQHw8W3Fvt2mCYn7dmdufxRdu7/KtHmrmDZvFU1btGF/hoZzj9BwDqPRyP49v9HUt2A5+Q8jatbg1q0wboeHk5aWhv/+A7TwtSyN43Fo3eVthn6zhaHfbKGeT0eOH/gZo9HItZDTlChZ+pG53w8TcesKSYl3ca9h+WW1lld1btyOICwiirS0dP48GECrpo0evSOmSXN3Ekz/Y0OvXefytRs09c5zatHf66jhyc3b4dyOiCQtLZ09Bw7TqlmTfJ6DJ/cSE4m/Y5o0feLMedyzTCzNLyIXDS2b+Tx6RyDh3j1S09IAiL97l3MXJe5VKj9ir+KrozhoAKjt5Z59fB46Rhufhtls5NXrTFuyhulfDsC5XNmM7Wlp6Xw5fQHPtmtBxxb5017UaDRWhfpjCVLKYCmlr5Sypvm3NG9/TkoZaP77AyllPSllQ3NgdUeW/ROllK9LKb2klEJKua0w2sTS1VEePD/XAylZtuuzHGsw4AT4SimThRBLMKWlPKAOcBcoL4SwkVKmm7fvAboDblLKfUKI+cDz5u2P0vOwhocp2FIL+UAIUQ2YDTSVUl4VQrTEFDkvXAwG7m1fR7n3PwcrK5JPHEQfFUbJjv8j/dY1UuVp0kLPYedVF8dPJ4DRQOKuTRjvmyLXibt+oFzPL0CjIT3sL5KD9lsswcbKiuHdmtHv+90YDEb+5+2Fl86RhftOUaeilvY1q/D98WD2XbqJjZUVZUvYMf6FlgCUK2FP3zYNeHeFaQWCvm0aUK4gK6OY2yLs27l4jJ8GVlbE/bGTlOvXcH23F/dDJAnHDnN7+SIqDfgCl5deB6ORm3MK+eFEcdAAeK+ZibZdM+xcnOh41Z+Q8fPQ2Jq+BteXbCBypz+6Z9vRPvgP9Pfvc+bDkQCkxd0hZPJCWh/ZDEDIpAWkxVl6r2pGr+f6rBmIWX5gZUX09l9JvnqVir37kBQcTPyhA9yY74f7sJGUf/MtMBq5OmkCADZOztScNQcMRlKjo7gyYdxjtUdjnxacDAxgQJ+3sLN3oP+gERllXwzoxYx5KwHo88ngjCUKvZs0p5GPafmxl1/rwaxvvmLP79vRubrx+fDxFmto5NOCk4FHGNjnTezMSxQ+YNiAnkybtwqA3p8MYeHsSaSZNXibNRw77M/KxXO4eyeeqeOGUs2jBqMmzMp3/dbW1nza7yNGjhmLwWCg6zOdca9WldVr1lGzhhctmvsiL4UwbuJkEu7dI+DYcdasW8/SRQsAGDxsODdu3OR+cjLvvN+LwQMH4NOkscXtAFCnUVsunjrApEHPYmdfgrc+mpBRNn34qwz9ZgsAP6+byYnDO0hLTWZs/0407/AK3V4zLdF78shOGrV8NtdJpI/CxtqawR++z+Dx0zAYjDzfqS3Vq1Zm2fdbqOXpQetmjbkYcoWRU/1ISEzk0PGTLN/4E2v9ppCuT6f/qEkAlCxRgq8GfYyNdcHSYWysrRnUtxdfjJ2MwWDguU4d8KhaheXrfqCWV3Va+fpwMeQyY6bMJOFeIoePn2Dl95tZPX8G1tZW9OvVg8/HTMSIEeHpQfcunR5daS4aBvb9P4aaNTzbqT0eVauwYt0PCLOG4JBQRk+Zyb17iRw5HsSq7zexav5M/rpxi5mLlmKl0WAwGnnn1f9lW0nkn6ajOGh4oGNI73cYNGmOaQnNDq2oXqUSSzZspbanO22aejN/zSaSkpMZNfNbANxcnJk+fAC7jxzn1MUQ7iYksmOvKQA0un8vanoUfFL3E6cI0rmKOxpjPpcCeygf2x0IlFK6mMvaY8rJ9hFCzASszHnflTBFzRdJKccKITww5Wh3wpRffltKOdx8jB7AROA3KeXHQojFQFdglJRyXS4argHdpZTnzGXXMDnxIcBl4G0p5QEhxGuYcnnqP7DN5dxeAfpJKZ8xf9YBF4A2UspgIUQvTDnhzYUQjYGNUsoaZtv6wC7AE9ONySqgrZTS/eF2ehTRX/V+YjcL+aVUDY+ilgBA6Ma8MpD+e1zfVbBVZAoTV9/8P6p9ktiv/LmoJWAoJpniTpqCTRIsTM7frV7UEgBoal/wteULC721XVFLAMBYTManwoR9avFYscS5QZsiHxjJG6cVqo/j8OawIj+nx+VJZPHPBVqZUzOWY87nFkLYYUpnGW5+VegnwItCiAeJfnswzTx94H3tNn/+u0h4DqSUKZiS5RcKIc5gyhd/VJLpbqCUEOK0EGKuOVn/PWC9+Rg9zD8AZwBpzhvaLKU8i8nJv4BpQulVS/QqFAqFQqFQ/Osp/NVR/vHkOxKuePKoSHgmKhKeiYqEZ6Ii4ZmoSHgmKhKeiYqEFy9UJDyT5E0zCzcS/vqQIj+nx+XfcSuhUCgUCoVCoVD8g/hPvbZeCBFIznMOkFJ+XBR6FAqFQqFQKP4TFPd1zIuA/5QTLqX8Z6zjo1AoFAqFQvFv4l+Sx12YqBZRKBQKhUKhUCieMv+pSLhCoVAoFAqFoghQ64TnQDnhCoVCoVAoFIoni0pHyYFywosRpevXKWoJYO/waJungEO5EkUtgbATRb80IBSP5QEjj8YVtQQAXA1FvwycjVX6o42eArb6lEcbPWFK2BaPtigOywNaGfRFLQEAjbHodRSH/gDQGA1FLQHb1MSilqAoxignXKFQKBQKhULxZNGodJSHUU64QqFQKBQKheLJopYozIFqEYVCoVAoFAqF4imjIuEKhUKhUCgUiieLSkfJgXLCFQqFQqFQKBRPFrU6Sg5UiygUCoVCoVAoFE8ZFQn/B3Ho0g2m7jiMwWDk5Sa16N3OO1e7P89fYcj3f7K+38vUraQD4FJ4DBO2HeBeShpWGlj/8cvY21re/YeCrzH15/0mDc3q0rujT+4azoQyZM0O1n/2JnWruHHk0nX8dhwiTW/A1tqKz7u3xterisX1P6Bkgybo3vsIrKy4u28Xcb9sylbu0qMPJes0AEBj54B12XJc6fsGANq3elHKuykAsVs3cC9gf4E0OLVuidfIYWisrLi9+SduLFuZrdy+YgXExLHYOjuRfucuF4eNJDUiMqPculQpmv76I9G79xI68ZsCaQAo69ucqgM/R2NlRdSvPxO+dk22cjs3NzxGfYV16dJorKy5+e0C7gQcQWNjQ7WhwylVqxYYjVz3m03CyRMF0tBg6WRcn2tPamQM+xu9kKtNndmjcO3WDv39ZE73Hs7dkxcAqPTeS9QY0Q+AkCmLuLVma4E0ABiNRtYsncWpwMPY2zvQd9AYPDxr5bC7GnqRxX4TSE1JwdunJe/1GYwmy6PSHT+tY/3KuSxau4syZR0t1rB6yRxOBh7B3t6BfoNG4eElcthdCQ1m0exJpKam0MinBR/0HYRGo2HtivmcOHYIGxtb3MpX4uNBIylVuoxFGo4FnWT+spXo9Qae79KJd157OVv56XMXWLBsFZev/cVXQwfRrlWLbOWJSUn07P85rX2bMvDjDy2qOytGo5EfVkzj3MmD2Nk58MGn46lavXYOu63r53HU/1eSEu/it/ZIxvY/f1nDwd0/YW1lTemyTrzffyxaXUWLNBw9cYp5S1djMBh4/pmOvPva/7KVnz5/kXnLVnPl2nW++uIz2rdqnlHW4eW3qV6tKgCuLi5MGT3Uorqz6ziN3/I1GAwGunduT49XX8xWfur8ReauWMuVa9f5esindGjpC8CJs+eZt2Jtht31W7f5esintPXN/dr7dwScOIPfirVmDe1475Xs39VT54OZu2Idl/+6wdjBn9ChZbOMsoXfbeBw0GmMBgNNG9ZjYO8e2b4zlvA4fRIRFc20+YuJjI5Bg4apX31JBTfXAmg4zdxl35k1dMi1P+YtX2Pqjy8G0N7cHw80TJ2/lMgYk4ZpY4ZRwU1nsQaAw6cvMmPNjxgMBl5q35yeLz6TrXztjr1s23sEa2srnMqW5qs+71BB50zg+RBmrf0pw+7a7Qgmf/oB7X0aFEjHU0FNzMyBcsL/IegNBib/cpDFvZ7HrWwp3vn2J9rXroana/Y1pBNTUll3+Bz1K2delNL1BkZu2suk1zogKmiJT0rGxtryL4PeYGDyT/tY3Pdl3MqV5p25G2lf1wNPN212DcmprDt4ivpV3TK2OZZyYG6vF3AtV5qQ8Bj6Ld3Kn2N6W6wBAI0Vup6fcGvKKNJjo6k6YQ6JJwJIvXUjwyR67dKMv8t1eQH7ap4AlPRuioO7F9dHforG1pbKo6aSdPo4hvv3LdNgZUWNMSM40/tjUiIiaPzDOmL2+pN0+UqGiefQwURs+5WIbb/g6NuU6oM/I/jL0Rnl7p/1Jz6wYE5vVh3VBn/Bpc8/IzUykjrLVhJ/8ADJ165lmFT4oBexe3YTtfVHHNzdqTl9Nmdefxndi6Z/fOc/6IGNoxM1Z87mwoe9wGi0WMbN1T9ybeFavFdMzbVc160tpbzc2Ve7C46+Dak3fyyHW72BrVM5ao7+lIPNX8VoNNLm6I9E/LKH9Pi7BWqO00GHCQ+7wczFm7ksz7Fq0TTGzViRw27loml82H8EnqIe08d9zpkTR2jYpCUAMVERnD11FK2ufIE0nAo8wu2wm8xZspFQeZ5lC2cwadbSHHbLF8yg74Av8RJ1+WbsF5wKCqCRTwvqezfl7Q8+xtrahnUrF7J10xre7fVJvuvX6/X4LV7O9PFj0Gmd+XjICFo288G9auZNr5vOhS8H9mfj1p9zPcaKdRtoUDens2wp504eJPL2dcbP+5mrIWdZv2QSw79Zm8OugU87Ojz7Fl8NyO4IVfGoxcip67CzL4H/rh/4cc0c+gyelu/69XoDcxavYOa4Uei0Wj76YiStmjXBvWrlDBtXFy0jBvZjw0+/5tjf3s6O5XNyH9OWoNcbmLVkFbPHjkCndabPsDG0atYYjyqZOtx0Lowc8BEbtm3Ptm/j+nVZOXsKAHcT7vHWJ4Np5l2/YBqWfsfsr4fhqnXmw2Ff07ppYzyqVMqiQcvIAX34ftvObPueDQ7h7MUQVs+aBMAnoyZw8nwwjetZPkYet08mz1lAj9dfpql3A5LuJ2NVgLcw6vUGZi9eyaxxI9BptfQdOprWzRrjnrU/XFwY+dnHbNiaU8OkOYt47/WXaOpdv8AawPQ/deqqTSwY8Qluzo68P2YmbRvXp3rlzGtPrWqVeW3iFzjY27H5z4PM/f5npnzWE5+6NVg/ZRgAd+4l8vLgiTSvnzPgUKxQOeE5+EfclgghTgkhLH57ixDimhCi3pPQ9Dd17hNCdC/s4567GUUVbTkqO5fF1saabvU92XfxWg67BX8G0qutN/Y21hnbjoTepEZ5Z0QFk7PsWNIB6wLckZ67HkEVF0cqa8uZNHjXYN/5KznsFuwKoFeHJtjbZN7j1a7kimu50gB4uTmTkpZOanrBXvTh4FmTtIgw0qPCQZ9OQsB+SjVpkad9mRbtuHfEHwC7SlW5H3wODAaMKSmk3LhKyQaWR5TKNqjH/es3SL55C2NaOpE7dqHt2D6bTUmv6sQfPQZA/NHj2cpL16mNnYszcYeO8DiUql2HlJs3SQkLw5ieTuyff+DUum12I6MR61KlALAuVZq06CgAHNw9SDgRCEB6fBz6hARK1SqY4xV7MJC02Dt5lru92Ilba00R7vijp7EtVxb78jp0XVoTtfsQaXF3SI+/S9TuQ7h2bVMgDQBBR/fTusOzaDQavGrVJzExgbjY6Gw2cbHR3E9KxKtWfTQaDa07PEtggH9G+drls3mr56cFjvIFHj1I247d0Gg01KhVj6S8NNxPpEatemg0Gtp27EZgwAEAGjb2xdra9N2pIeoSGx2Zo46/IzgklIoVylOxvBu2trZ0bNOKQ0cDs9mUd3PF06MaVrmcowy9TFz8HZo2amhRvblx5vg+mrfvjkajoXrNBtxPSuBOXFQOu+o1G1DOKWckUdRrip296dLvUaMBcTERFtV/MSSUSuUftIUNHdu05OCx7G1Rwc0VT/dqBXak8qfjMpUquFGxvCu2tjZ0at2cg8eCsutw1eHlXvVvx92+I8do3rghDvb2lmsIvUzlCq5UMmvo3Lo5B49lDwI80PBwW2g0kJKWRnp6OmnpaaTr9Tg7lrVYAzxen1y7fhO93kBTb1O0t2QJh4K1RUiouT/czP3RgoNHH+oPNx2e7lXRPJTHfO3GTfQGPU3NN0IF1QBw/vJfVHHTUdnVBVsbG7o0b4x/0NlsNj51a+Bgb3r5UT0vdyJi43McZ/ex07RsWDvDrtiisSrcn38B/4izkFJ6SyktDFX+u4i8m0j5cqUyPruWLUXE3exv4roYFk34nXu0FVWzbf8r5g4a4ONVO3hzwRZWHjhVQA33KO9YOlNDudJE3HlIw81IwuMTaFvbI8/j/Hk2lNqVXLGzKdiDGBtnLekxmU5Nemw0Nk7a3G1dXLHVlSfp/GkAUq9foWTDJmjs7LEqXZaSdRpgo3WxWIOdqysp4eEZn1MiIrB/6JHoveBLuDzTCQCXZzpiU7o0No7lQKPB88shXJ42y+J6c+jQ6UiNzHTSUqMisdVld2bCVixD26UrDX/8mZozZvHXnJkA3A8NwbF1G7C2xq5CBUqKWti5uvEkcKjoxv2bme2VfCsch0puOFR0I/lGlu03I3CoWHANcTFRaHWZ+ztrXYmLicph4+yS2VfOLpk2QQH+OGl1VPOoWWANsTFRaLMeX+tK7EMaYmOicNZmtdHlsAHY98d2vH3yvsHMjeiYWFxdMr8POhdnomNi8rWvwWBg0Yrv6NfrfYvqzIv4mEictJlRPUdnN+JjLLupeMChPT9Rr1Fri/bJ0RZaZ6JjYvO9f2pqGn0Hj6Tf0NEcCDhuUd1ZiYrNTYflb6HdfeAInVpbNh4yNMTE4arNriEqNn8a6okaNK5Xm//1/oz/9f6MZt71ca9c6dE75sLj9MmNsNuULlWS0VNm0nvQcBatXIteb/lbMaNj43JoiIrNp4ZbtyldqhSjvplN789HsHDVugJpAIiMvYObNjPdzdXZkci4vIMZ2/YF0LJhzkDJ70dO0LVF4wJpUBQtj/SChBBGYDTwEqAF+gCdgW6ALfC6lPKiEKI88D1QFnAAtksph5mPsQxIkFJ+LoRwAwKAlwFfoIGUsr8QohlwFGgmpTwuhFgInJJSLjFrKCOlvCeEuAZ8BzwDVABmSCnnm+tpAyw0S/cH/ja0IYToCbwL3Ae8gHDgPSnlLXP5l8Cr5na6BfSRUoYLIToBE83naQNMklJuyOX4bwFDgJellDcf1daPg8FgZMaOI4x/tX2OMr3BwMm/Iljf72UcbG3ou/JX6lTU4etZsIvo32r45QDj33wmT5vQ8BjmbD/Et31eKtS686JM87bcO3YQzK8vTjp7EvvqNakydgb6u3e5HxIMhifzauMr02bhNWY4bi+9yJ3AE6SER2DUG6j49hvE7j+YLT/8SeLcuQvRO3cQsWE9perWo/rosZx7/x2itv+KQzV36i5bSUp4OPfOncVYTF69XRSkpCTz8+bVfDlublFLAeCnjauxtramdfsuT63ObTt24dukMTqX3G9qi4qj+7dz/fIFBo9f/lTr3bhsPjqtM2HhEXw+ZgLVq1WhUoWCpSk9LtGxcVy+fgPfRk8/5/fm7Qj+uhnGj0vnAPD5uKmcviBpWCfnXIcniV6v58yFYJbN/gZXnQvjpvvx2559PP9Mx6enwWDgzIVgls+ajKvOhbHT57Jzjz/dn+nwROvdcfA4F69cZ8mYz7Jtj467Q+iNMFo0ePz0sSeOSkfJQX5DkfFSyqZCiNeBbcBbUsoRQohhwCigBxAPvGB2lG2BXUKIblLK34ABwFEhxEvAp8B0KeUpIcQ94HNzHZ2AI+bfx82/Z+ahp6SUsoUQwh04J4RYBaQBG4B3pZT7hBBvAP3zcW6tAW8ppRRCfA34Aa8JIXoAnkBzKaVBCNHPrOdd4ATQWkqpN99UBAkhdkkpM8IK5rbpAnSWUuZ9a5tPXMuWIjxL1DnybiJuZTMj44mpaYRGxvLh8l8AiL53n4Frd+HXoyuuZUvRxL08TqUcTCdcsyoXw6ItdsJdy5YmPP5epoY793DLEp1PTEklNDyGD7/dYtKQkMTAVb/i17M7dau4ERGfwOertzPxrS5UcbFssltW0mNjskWvbZxdSI/LPdJXukU7olYtzLYtbttG4rZtBKB8/2Gk3r5lsYbUyEjsy2f+M7Z3cyPlIac6NSqKC58NAcCqZAl0XTqhT0igrHdDyjVpRMW338C6ZAk0trbok5K4Osty5y81Kgo718yIqp3OlbSo7BFVXfcXuDRkEACJ58+hsbfDppwj6fFx3Jjnl2FXe9ESkm9ct1hDfkgOi6BE5fI8+II4VCpP8q0IksMicG6XOfnLobIbsf7HLDr2H9s3sff3bQBUr1GHmKjMlIXYmEictNmfDDhpddlSPGKjTTaRt28SFRHGyIE9MraPHvQ+42auxDGPJy0P2PXrFvbsMuVXe9aoTUzW48dE4vyQBlPkO6tNVDabfX9u58SxQ4yeNNfitBgXrTOR0Znfh6joWFy0+XOqz8tLnD1/kW07d3H/fjLp6emUKOFA3w965Lv+fTs3cHD3jwBU86xLXEzmk4742AgctZZNort4JoCdW5YxePxybG0te9yeoy1iYnHROud7f53ZtmJ5N7zr1SHkyrUCOeE659x0OP3NHjnZe+gobX19sCngE0Sd1onImOwadM7507D/aCB1a3pSsoTpf0jzxg05J0ML5IQ/Tp/oXLR4ebhTsbzpaVdrXx8uyFCezzvuk7sGZ6ccGnTO+dSgdcbLo1qGhja+Ppy/FGqZADOuzuWIiMlML4mMjcfVqVwOu6PnJCu2/cGS0QOwe2hBhT+OnqSDTwNssqSgFlvUxMwc5LdFNpp/nwCMUsoHMxWCMEWQAayB6UKI0+bt9QBvAHMqyRvAWkwO/ULz9lCghBCiMianeyTQSQhRBbCXUl7OQ88G8/7XgDigMiCAJCnlPnPZD0B+nN+DUkpp/nsZ8OCW+kVMEf8TQohTmBx6d3OZDtgshDgH7AKczfU/YCzQHHiuMBxwgLqVdFyPucPN2Lukpev57exl2tWqllFexsEO/5EfsPOLd9j5xTs0qOyKX4+u1K2ko1WNKoRExHI/NZ10vYGgq7ep7mrZPwCAulXcuB4dz83YOyYNp0JoV6d6poYS9viP68vOkb3YObIXDaqWz3DA795P4dMVvzDwuZY08rBsdYOHSb5yCbvyFbHRuYG1DWWatyUxKCCHnW2FyliXKk1yyMXMjRorrMwrTdhVcceuijtJZy2fHHn37HlKVKuKQ6WKaGxtcH2uKzF7/bPZ2Dg6Ztz5V+3Tm/AfTTnRwcNGcrTTsxzt/ByXp80mYtuvBXLAARKDL2JfpQp2FSqgsbHBufMzxB06kM0mJSKCMk1Mq8E4VHPHys6O9Pg4rOztsXIw/VMt69MMo16fbUJnYRL5yx4q9TA9/XD0bUj63QRSwqOI+v0gus6tsXEsi41jWXSdWxP1+0GLjv3M868z2W8tk/3W0sS3LQf37sRoNBIafJaSJUvj5Jw93cjJ2YUSJUsRGnwWo9HIwb07aeLbliruXixc8xtzlm1lzrKtOLu4MnHOd490wAG6dn+VqfNWM3XeanxatGX/nt8wGo2EBJ/LW0OJUoQEn8NoNLJ/z2/4+JpSLU4FBfDLlvUM/Woq9ub+sYRaNby4FXab2+ERpKWlsefAIVrmcyWN0UMGsnHFt2xYtpB+//ceXTq0tcgBB2j/7FuMnvEDo2f8gHezDgTs+xWj0ciVS2dwKFk619zvvLh+JZh1iyfSb/gcypbLv/P8gFo1PLl5O5zbEZGkpaWz58BhWjVrkq99E+7dIzUtDYD4u3c5e/FStol7lumozs3b4YSZdew+GEDrpvnT8YA/Dx6mc5uCpaIA1PKqzo3bEYRFRJGWls6fBwNo1bRRvvZ1c9Fy8kIw6Xo96enpnDofTLXKBbuOP06f1PLy5F5iIvF3TBO3T5w5j3sVy5/oPtCQ2R9HLNSQlKnhbME0ANSpXpUb4VHciowhLT2d3wNO0LZJ9mlswdduMnn5RmYN+RDncjlXSdp1+ARdW1g2lhTFh/zeUiebf+uBlCzb9VmOMRhwAnyllMlCiCWY0jUeUAe4C5QXQthIKR/MytsDdAfczBHs+cDz5u2P0vOwhoexfJmHTDTARCllzqUVYBHwM/CKlNIohLhE9nMNwJQuUw0IeQwNGdhYWzGieyv6rd5pWsqoicDLzZkFfwZSt5IL7Wu757lv2RL2vNeqAe98+xMaoE3NKjnyxvOt4aX29Fu6zaShWV28ymtZsCuAupVdaV+3ep77bjh0muvR8Sz54xhL/jBFOhf1fQlt6ZIWlAOfYwAAIABJREFU68BgIHLVIip9OdG0RKH/76Teuo7zqz1IuRpC4omjgGlCZsKR7I6xxsaayl9NNx3mfhLhi2YULB1Fryd04jfUX7YIjZUV4T9uIyn0Mu4D+pFw7gIxe/1xbOaDx+DPwGjkTmAQIeOnWF5PPnRcnzUDMcsPrKyI3v4ryVevUrF3H5KCg4k/dIAb8/1wHzaS8m++BUYjVydNAMDGyZmas+aAwUhqdBRXJowrsAzvNTPRtmuGnYsTHa/6EzJ+HhpzxOb6kg1E7vRH92w72gf/gf7+fc58OBKAtLg7hExeSOsjmwEImbSAtL/JiXykDp9WnA46zJCPXsXO3oG+n43JKBs5sAeT/Uwrc/T8eBhL/MaTmppCw8YtMlZGKQwa+bTgVOARBvZ5A3t7Bz4eNDKj7MsBHzB13moA/u+TIRlLFHo3aZ6R+73y21mkpaUxabTp6UUNUZcPPx2W7/qtra357KPeDBs7CYPBwLOdO+BRtQor1m1AeHnSyrcpwSGhjJk8nXv3EjlyPIiV639g1YLZhdYGD6jXuA3nThxkzKcvYGfvwAefZI6xiV+8wegZPwCwZc1sjh/YSWpKMsP7dqFVp5d54c1+/LhmNinJSSydaVoa0NmlAp8M98u1rtywsbZmUN9efDF2MgaDgec6mdpi+bofqOVVnVa+PlwMucyYKTNJuJfI4eMnWPn9ZlbPn8FfN24xY9EyrDQaDEYj7776YrYVPCzBxtqaz/v0ZMi4qaYl8Tq1w6NqZZat30wtLw9aN2vCxZDLjJo6m4R7SRw+fpIVG7awZq5pJZjbkVFERsfi/Rgr1thYWzP4w/cZPH4aBoOR5zu1pXrVyiz7fgu1PD1o3awxF0OuMHKqHwmJiRw6fpLlG39ird8U2rdoRtDZi3wwaCQajQbfRvVpnU8HPjcdBe0Ta2sr+vXqwedjJmLEiPD0oHuXTgXT0KcnX4z7BoPewHOd2+NRtTLL129CeFXP6I/R38w2aQg8wYrvN/PdvOlYW1vxSc93GfTVJIxGEJ4evFDAdBgba2uG9nyVAVMXoTcYeLFdczwrV+DbzTuo7VGFdk3qM3f9Nu4npzDcbxUAbi5OzB7SB4CwqBgiYuNpXNuzQPU/bYwqHSUHGuMjliN7KB/bHQiUUrqYy9pjysn2EULMBKzMed+VMEXNF0kpxwohPDDlaHfClF9+W0o53HyMHpjyq3+TUn4shFgMdAVGSSnX5aLhGtBdSnnOXHYNkxMfAlwG3pZSHhBCvAZsAuo/sM3l3HpiyiFvKKUMEUKMxpSa8poQ4j1gIPCMlDJOCGEP1JJSnhZCBAHjpZTbhBDPYIqGdzTfROwDZgBJwGLgJSnl+Ud3BSRvmvk4Nw2Fg73lkbcnwY2N2x9t9IQJOxFW1BIAKKkt+j6JPGr5JLIngeu5o0UtARurgq3qU9i4GYp+fMrUGkUtAYDatsFFLQGrYjKfQmMseh166+KxSofG+GTm+1hCycScE66LgjI+3YrcA76/d12h+jglOrxb5Of0uBRmgs5coJU5RWM5sBtACGGHKZ1luJQyBPgEeFEI8ax5vz2YIsa7zZ93mz//XSQ8B1LKFOBtYKEQ4gzQHshPgushYIYQ4gKmVJSB5uOtAdYB/ubjBQGtzPsMN+9zClOazZlc9OwBegI/CyEKFjJQKBQKhUKhUPwreWQk/N+MORLeXUr5WlFrARUJz4qKhGeiIuGZqEh4JioSnomKhGeiIuGZqEh4JsUiEr7v+8KNhLd/u8jP6XFRb8xUKBQKhUKhUDxRVE54Tv4TTrgQIpCc5xogpfwYWPX0FSkUCoVCoVAo/sv8J5xwKaXl7yVXKBQKhUKhUBQO/5JXzRcm/wknXKFQKBQKhUJRhKh0lByo2xKFQqFQKBQKheIpoyLhxYgk0ezRRk+YhJKWvVL6SbHng/5FLQHfscVjVrvVY71zqnBwNRSP1Q4i6/kWtQTKiAK8YOoJoN9i0SquTwQHm7SilgDAPVvHopZAdJrlb/T8t+JgnVrUEooNyaW9Hm30FGhe1AJAvbY+F5QTrlAoFAqFQqF4oqjVUXKibksUCoVCoVAoFIqnjIqEKxQKhUKhUCieLGp1lBwoJ1yhUCgUCoVC8UQxKic8B6pFFAqFQqFQKBSKp4yKhCsUCoVCoVAonixqYmYOlBOuUCgUCoVCoXiiqHSUnCgn/B/EkZPnmLPye/QGAy92asP7Lz+Xrfz7X37n590HsLa2wrFsGUZ90osKOi0AgybO5nzIFRrUqsHMEZ8VWMPxwCAWLVmGwaCnW5cuvPXGa9nKz5w7x7dLlnHl6jVGfjmUtq1bZZSNHPM1F+Ul6tWpzYSxXxVYA4DRaGTvlklcPe+PrZ0DXXt8g1uVujnstizsTeKdKIwGPZU8m9Dxja+xsrLGf+tUrpzdi7WNLeVcqtL13Sk4lCxrsYZVS/w4GXgEe3sH+g0aSXUvkcPuSmgwC2dPJjU1hUY+LejZdyAajYYjB/ewef0Kbt34i0mzluJZo1aB22LlEj9OBAZgb29P/zx0XA6VLDDraOzTnF5mHQkJd5k99WuiIsLRuZVn8PDxlC5dxmINa5bO4lTgYeztHeg7aAwenjnP52roRRb7TSA1JQVvn5a812cwmizRkR0/rWP9yrksWruLMmUtW/u5wdLJuD7XntTIGPY3eiFXmzqzR+HarR36+8mc7j2cuycvAFDpvZeoMaIfACFTFnFrzVaL6s6KU6uWeA4fisbaivAtW7mxfGW2cvsKFag54WtsnZ1Iv3OX4OGjSI2IxL5CBer4zURjZYXGxoaw9Ru4/cPmAuswGo18t3QWpwOPYGdvz0d59kkw3/pNIC0lhYY+LXj/oT7Z/tM61q+cx7drf7O4T4xGI+uWzeRM0CHs7B348LOvcc9Fw7XQiyybO47U1BQaNGnFux8OydDwx68b2b1zE1ZWVjRs0po3e1p2/QoMDGTJ4kUYDAa6dO3GG2+8ma08LS2VmTNmEBoaQpkyZRk+YgRubuXZu3cPW7Zktv+1q1fxmzsfT09Pi+p/gNFoZN3SmZwOOoydvQN9Bn6Va1tcDb3IsrnjSU1JoWGTlrzb56G22LEZjZUV3j6tLG6L4qDhgY6ivnYWBw0PdBSHPlEUDeq25B+CXm9g5vJ1zBo1iO9nT+CPQ8e4eiMsm01Nj6qsnDqatTPH0bF5Exas2ZRR9u7/uvHVgN6PqUHP/EWLmTTua5YuWsC+/fv56/r1bDauOh1ffD6Qju3b5dj/9VdfYdiQzx9LwwOuXthPfOQ1/u+r3+n81gR2bxybq133Xn68P+Jn3h/5K0n34rh08jcAqolWfDDyV94f8QtOru4c+2OxxRpOBQYQHnYDvyUb6PPpUJYvnJGr3bIFM+k7YBh+SzYQHnaDU0EBAFSpVp0hIydTu25Di+vOysnAAG6H3WTeku/56NNhLF04M1e7pQtm8vGAYcxb8j23w25yKugoAFs3raV+wybMW/o99Rs2YeumtRZrOB10mPCwG8xcvJne/YezatG0XO1WLprGh/1HMHPxZsLDbnDmxJGMspioCM6eOopWV97i+gFurv6RY90/zLNc160tpbzc2Ve7C2f7jaHe/LEA2DqVo+boTznU6g0OtnydmqM/xcbRshuyDKys8Bo9nHP9PiXwxVfRPdeNktWrZzOp/sXnRP68nROvvMn1RUvwGDQAgNSoKE69+wEnXnuLk2+/R5XevbDT6QqmAzgddMTcJ5vo3X8EK/PokxUZfbKJ8LAbnM7RJ8cK3Cdngg4Tcfs6Uxf9SM9PRvLdt9/kard68Tf07D+KqYt+JOL2dc6eOAzAxbOBnDzmz4Q565k87weefamHRfXr9XoWLVzAuPETWfTtEvb77+P69b+y2ezatYvSpUuzbPlKXnr5ZVauWAFAhw4dmT9/IfPnL+SLIUNxcytfYAccTG0RfvsG077dQq/+I1i9aGqudqu/nUqv/iOZ9u0Wwm9nfkcungnkxNH9TPBbx5T5Gy1ui+KiAYrHtbM4aIDi0ydPBY2mcH8sQAhRUwhxRAhxyfy7Ri42Y4QQ54UQZ4QQQUKIrlnKVgkhbgohTpl/RhVCi/w7nHAhxHghxJuPtsxz/7FCiHy9ElAIMUgIka/XSgoh9gkhuhdUV1YuhF6lcnlXKrnpsLW1oXOrZuwPPJXNpkm9WjjY2wNQt6YnkbFxGWVN69emVAmHx9IgL4VQsWIFKlQoj62tLe3atuFwwNFsNuXd3Kju4ZEtkvaARt4NKVmixGNpeMDls7up0+wlNBoNFT28Sbl/l3t3InPY2ZcoDYDBkI5Bn4YGky732q2xsjY9CKrg7s29+HCLNRw/eoC2Hbuh0WioWaseiYn3iIuNzmYTFxvN/fuJ1KxVD41GQ9uO3TgecACAylXcqVi5qsX15tRxkHYZOuo+QkddNBoN7Tp245hZx/GjB2nfqRsA7TtlbreEoKP7ad3hWTQaDV616pOYmJC7hqREvGrVR6PR0LrDswQG+GeUr10+m7d6fprr2MkPsQcDSYu9k2e524uduLXWFOGOP3oa23JlsS+vQ9elNVG7D5EWd4f0+LtE7T6Ea9c2BdJQpn497l+/QfLNWxjT04nauQttx/bZbEp6Vif+2DGTjmPH0XYwlRvT0zGmmd5AaWVnB1aPlz8ZdHQ/bTo8h0ajoUateiTlNS6SEqlhHp9tOjxHUMD+jPI1y+fwds9PC5zKefKYP63aP28aF6I+SYkJxD+kIf7BuBCmcdGq/fOcOGoaF3t2buH5Vz/A1tZ0eS7raNlbKS9dkuZrVgVsbW1p27YdAUeOZLM5GnCETp07A9C6dRtOnz6F0Zj9LbX+/vto2y5nYMESThzbTytzf/xdWyRnbYsOz2W0xe7fttD9MdqiuGiA4nHtLA4aoPj0yVNBY1W4P5bxLbBASlkTWADkFnk7BjSVUjYA/g/YKITI6rR8I6X0Nv9MKkgTPEyxcsKFEAVKj5FSfiWl3PgYVX8N5Pe93IOAp/5u96jYOFy1ThmfXZ2diIqJy9P+l90HaNGofqFqiI6JQefikvFZ5+JCTExModaRX+7FR1DGKTM6V9qxPPfuRORqu2VBb74d0RJb+1LUaNQ1R/n5gC2412lrsYa4mGi0LplDQat1JTYm+8UzNiYaZ21mNNNZ60rcQzaPS2xM1EM6dLnq0GbRYbKJAuBOfBxOzqZ+dXTScic+73GVF3ExUWh1bhmfTecZlcPGOYtOZ5dMm6AAf5y0Oqp51LS47vziUNGN+zczb7aSb4XjUMkNh4puJN/Isv1mBA4V3XI7xCOxd3UlJTxzHKZERGDnmj2anSgvoe3cEQBt547YlC6NTblypv3Lu9H4x434/rmTG8tXkRqVvQ0tITYmCq0uS3vn2SdZxqeLa8a4CAzYj7NWRzWPHAGjfBMXG4WzS2ZbOmldiYuNfMgmEmet60M2Jg3hYX9x6cIpxg/tyZRRfbkSct6i+mNiYnDJcn4uuVyzYmJi0JmfOFhbW1OyZCnu3r2bzWb//v20a9feorofJi4mEm2WtjCN/8gcNk7ah/vMZBMRdh154RTjvujF5JEfcSXkwj9Sg6mOor92FgcNJh3Fo0/+zZgDp42B782bvgcaCyGyXZyllLuklEnmj2cADaB9ktqeSk64EMIIjAf+B5QARkopt2QpGwc8D/wmhJgOzAIaAA7AXmCwlFIvhKgEzAUe/Ff4Xko5RQixCgiUUs4XQowF6gAuQEXgPPB/UspcQ2RCiAXmPw8LIQxAe8Ae012TJ6ZOmC6l/M78+KEisFkIkQy8A1QAJpq12gCTpJQbHrPJHovf9h8h+MpfLBw3tChlFBte7b+c9LQUdqz+ghuXAqhWKzNP/eiuRWisrKnt82IRKiw+aDQPnhU8PVJSkvl582q+HDf3KddcNFyZMRuvUV9S/n8vcifoBCnhERgNegBSwiM48cqb2Ol01Jk7i+g//iQtJvapazT1ySqGF3GfGAx67iXcZcy0lVwNucDC6SOZvnhrgZ+WFITg4GDs7e1xd3d/anXmhl6vJ/HeHb6avoIrIRdYMG0EM5Y83bYoDhoU2fkn9Ulhv7ZeCOEI5DZRJV5KGZ/lcxXglpRSD2D2J8PM2/OKdLwPXJZS3syybbAQ4iPgMjBCSnnxcc/haU7M1EspvYUQApPDe0BK+eB2776UsimAEGIZ4C+l/FAIYQWsw/RYYCmwFtghpXzVbOuSsxoA2gDeUsoIIcQKYAzwRW6GUsr+QohPgJZSynvm424EzkkpXxZCVACChBAnpJSThBB9gNeklOfMtreB1uZOdTPb7pJSWh5O/Bt0zk5EZol8R8bGocsSGX/AsTMXWPXjdhaOG4adrW1hSsBFqyUqOjMKEBUdjVb7RG8Ss3Fq/zrOHv4BALeq9UmIy4xe3osPp3S5vKOXNrb2eNXvROiZ3RlO+PmAH7lybh+vDViV7wvWrl+3sHvXLwB41qhNTHRmxCImJhJnbfYh6ax1yYgsAsTGROKkzWvY5p/ffv2RP806vGrUekhHVK46YrLoMNmYggDlHJ2Ii43GydmFuNhoyjrmHFe58cf2Tez9fRsA1WvUISYqMwJsOs/sEWAnrY7YLDpjo002kbdvEhURxsiBPTK2jx70PuNmrsTRqfDGV3JYBCUql+fBt8ihUnmSb0WQHBaBc7tmGXYOld2I9T9WoDpSIiOxL585Du3d3EiNzH6NT42K4sIg0+XIqkQJXDp3Qp9wL4dNUmgo5Ro3JvqPP/Nd/+/bN2fpk9rERGVp7zz7JMv4jI7EWasj4vZNoiJuMyKjT6IYNegDxs9c8cg++XPHD/j/bkr78ahRh9jozHERFxOJk3P2B4lOzq7EZon8mWx0Zn2u+LTogEajoXpNUypVwt14ypbL3xjVarVEZzm/6FyuWVqtlqioKFxcdOj1epKSEilbNnNOwP79/rRr3z5f9T3Mn9s34f+HuS286hCTpS1M4/+httBmj4LGZomAOmtd8WluagvPmnXRWFnlqy2KgwYoHtfO4qABik+fPHUKf3WUQZgyGR5mHDC2oAcVQrQDJgDPZNk8CrgtpTQIId7HFDSu/sCxLyhPMx1lOYCUUgIngOZZylZn+ftFYKgQ4pTZrglQUwhRGmgJzH5gKKXM67nQr1LKB6N6OdDRQq2dMecLSSlvAzuADnnY6jBFxs8BuwBnIOcU68ektpc7N25HEBYRRVpaOn8eOkYbn+wTQuTV60xbsobpXw7AuVwBJ5b9DaJmDW7dCuN2eDhpaWn47z9AC1/fQq8nL7zbvst7w7fx3vBteDXozIVjWzEajYRdPYWdQxlKl8t+4UpNSczIEzfo07lyfh/ObqZJclcv7Of47mX8r+8ibO3yn6fetfurTJu3imnzVtG0RRv27/kNo9HIpeBzlCxZOiOt4wFOzi6UKFGKS8HnMBqN7N/zG019C5ZvnJVu3V9hxryVzJi3kqYt2uCfoeP8I3Scx2g04r/nN5r6tgbAx7cV+3abJqzu2525/VE88/zrTPZby2S/tTTxbcvBvTsxGo2EBp/NW0PJUoQGn8VoNHJw706a+LalirsXC9f8xpxlW5mzbCvOLq5MnPNdoTrgAJG/7KFSj5cAcPRtSPrdBFLCo4j6/SC6zq2xcSyLjWNZdJ1bE/X7wQLVkXDuPCWqVsWhUkU0Njbonu1KzN592WxsHB0zJhVV7fN/hP9kcprt3FyxMs/psClbhrKNGpF07ZpF9Xd5/jWm+K1hit8afHzbcWDvDoxGIyHB5yjxN30SYh6fB/buoIlvW6q6e7FozU78lm3Fb9lWnF10TJqzOl990vm5N5gwZz0T5qynsW97Du3bbhoX8iwlSpXG8SENjg/GhTSNi0P7ttOomSn/urFvey6eDQQg/NZf6NPTLFqhpWZNwa2wMMLN16z9+/3xbd48m42vb3N2/2m60Tl48AANGjTMuCk3GAwcPLCftm0Llg/e+fnXmTBnHRPmrKNx83YcMvfH37WFQ9a22LuDxs3amtuiHRfPBmW2RVr+2qI4aIDice0sDhqg+PTJv4A5gEcuP3MesrsBVBJCWAOYf1c0b8+GEKIFpoDvS2Z/FQAp5S0ppcH893dAaaDy455AcVmiMGsYSIPp5K9kNTA74cWRRcDPwCtSSqMQ4hKm1JRCxcbamiG932HQpDkYDAa6d2hF9SqVWLJhK7U93WnT1Jv5azaRlJzMqJnfAuDm4sz04aaVFz4eM5W/bt0mKTmFFz8aysh+H9Dcu55FGqytrfm030eMHDMWg8FA12c6416tKqvXrKNmDS9aNPdFXgph3MTJJNy7R8Cx46xZt56li0wZP4OHDefGjZvcT07mnfd7MXjgAHyaNC5Qe3jUbcfVC/6sGP8MNrYl6NpjckbZmm/+x3vDt5GWcp9tS/qhT0/FaDRSpYYvDVu/BcCeTRPQp6eyZUEvACq4N6TzW+Mt0tDIpwUnA48wsM+b2JmXuHrAsAE9mTZvFQC9PxnCwtmTSEtNwbtJc7x9TE7AscP+rFw8h7t34pk6bijVPGowasIsi9uisU8LTgYGMKDPW9jZO9B/0IiMsi8G9GLGPNMSeX0+GZyxRKF3k+Y0Mut4+bUezPrmK/b8vh2dqxufD7esHQC8fVpxOugwQz56FTt7B/p+NiajbOTAHkz2M6240vPjYSzxG09qagoNG7egYZOWFteVp4Y1M9G2a4adixMdr/oTMn4eGlvTJe76kg1E7vRH92w72gf/gf7+fc58aOqvtLg7hExeSOsjpuXoQiYtIC0u7wmef4teT+jkqdRbvNC0ROFP20i6fIVq/fuRcP4Csfv8cWzqg8egARiNRu4EnSB04hQASlb3oPrQwWAENHBz1XckhYQWvD18WnIq6DCDP3oNO3sHPvpsdEbZiIHvMcVvDQC9Ph5qWjYyo09aFLjOh2nYpBVngg4x7OOXsbd3oPdnmUuTjhn0DhPmrAfg/Y++NC1RmJJCgyYtaWAeF207vcjy+eMZ9dmb2NjY8uHAsRY9Zre2tqZfv08YM3oUBoOBZ7p0oVo1d9as+Y4aNWrQvHkLunTtxowZ0/iwdy/KlCnDsC8zvz/nzp3FxUVHhQoVCqctAg8z9ONXsLd34MMBmd+RMYPeZcKcdQB88NEwls41fUcaNM7SFp1fZNm8CYwc8BY2Nrb0GfS1xSkHxUEDFI9rZ3HQAMWnT54GxkJOdjSnnMTnwy7SHNh9G5OD/TZwUkqZ7TGlEKIpsBFTtsOJh8oqSSlvmf/uCuiBW497DpqHZ4E/Ccx532OklBPNy8IcAeqYG8YIlMmSCrIc08n1M6d4uJjLrwoh9mJKR5lutnWRUkbnkhPeF2gopYwyp7fESylzTUcxH+cuUDtLA28EgqWUXwshymOKyD8jpTwvhDhj1nbIbBsEjJdSbhNCPIMpGt5RSrlPCLEPmCGl/DU/7RR75sCT74xHkFDyqc85zZXfrhT6wwSL8fUo+KS4wsSKIh8WpBjyO2/5yRJZ7+k9ecmLMqJkUUsAoOSWPUUtgTSDdVFLAEBnVzQTxLMSnVaMV6V4yjhYpxa1hGJDsr54XDub1ypX5J55/Mk9hfrPzLFRx3yfkxCiFqasCycgDnhfSimFEDuAr6SUgUKI44A72Z3r96SUZ4UQfwJugAG4CwyVUgY87jk8zUi4jRDiJFAS+ChLPvjDDAKmAafNDnqKedtVoAewQAjxASZHfT2Q26KaB4AN5omcF4Ahj9A2E9gjhLiPaWLmZ8Bis8OtAYZLKR9My58LrBRCJGGamDkcWCiEGAccxzSjVqFQKBQKhUJRDJBSBgM5ojhSyuey/N30b/bv/CR0Pc1IeEa0+wnXNRYo/XeR7+KKioRnoiLhmahIeCYqEp6JioRnoiLhxQsVCc9ERcIziT+1r3Aj4d7ti/ycHpfikhOuUCgUCoVCofiXUthLFP4beCpOuJTyqbW8lHJsbtuFEF8Br+RS1OVvUmMUCoVCoVAoFIpC5z8TCZdSjsf0wiCFQqFQKBQKxVPEWPjrhP/j+c844QqFQqFQKBSKIkKlo+RA3ZYoFAqFQqFQKBRPGRUJL0borYt+FnWqptDfM1QgrIrB7WFxWJUEwFDILzgoCDZW6UUtASgeK5MkyKSilgCAtd62qCVwP73oNQDU1N8uaglEWj/+68wLg3RD0V88i16BCY2m6K/hiWn2RS2h2KDSUXKinHCFQqFQKBQKxROlsN+Y+W9A3ZYoFAqFQqFQKBRPGRUJVygUCoVCoVA8UVQ6Sk6UE65QKBQKhUKheLKo1VFyoG5LFAqFQqFQKBSKp4yKhCsUCoVCoVAonihGFffNgXLCFQqFQqFQKBRPFKNKR8mBcsL/QQScOIPfirUYDAa6d27He6+8kK381Plg5q5Yx+W/bjB28Cd0aNkso2zhdxs4HHQao8FA04b1GNi7B5oCfCGCAo+zZPEiDAYDXbp24/U33spWnpaWyqwZ0wkNDaFMmTJ8OWIUbm7lAbh69Qrz5/lxPykJjUbDbL/52NkVbG10o9HInk2TuHreHxs7B5597xvcqtbNYbd5fm8S70Zh0Oup7NWETm9+jZWVNfLETg5vn09MxGV6DN1E+Wr1C6Rh5RI/TgQGYG9vT/9BI6nuJXLYXQ6VLJg9mdTUFBr7NKdX34FoNBqOHNzLD+tXcOvGX0yZtQTPGrUK3BarlvhxMvAI9vYO9MtDx5XQYBaadTTyaUHPDB172GzWMWnW0gLpMBqNrF4yJ4uGUXjkoWHR7EkZGj7o+//snXdcFMf7x99HRwHhjmYXBdfeEQv2ErsmMUVTNPYajS0Gu0ax19h77yUmliRWBEVEULFt7I12cCBK57jfH3cCB6gcivjLd9+vFy/dnWd3PjczOzv77DOzI5HJZGzb8BtBAX6YmJji5FySQSO9KGplbbAOu8aNqDB+LDJjI8L3H+LJ+o1XMkHCAAAgAElEQVR66ebFi1NxxhRM5XakPY/j9vgJpEREYl68OFWWLEBmZITMxITQHbsI27PP4PxrrJ2FY4fmpERG41O7c642VRZNwLFdM9SJSVztO5644JsAlPyuG26/DAbgjvdKnm09ZHD+WdFoNOxYP4+Qy36YmVvQd/hUylaonMPu4b1brF86hdSUZKrXbUzPvmORyWQ8fiCyZdUsUlNSMDI25rsB4ylfsZrBGvZunMONoHOYmVvw3dAZlClfJYfd4R1LuejzBwkv41i07WLG/nN/78Hn+C5kRsaYWxSh58DJFC9dwSAN/sEhLN6wA3V6Op1bNeX7zzrqpe88/Bd/nPTB2MgI22LWeA3pQ3FH7ZrfR0/7smnfHwD07t6ZDi08Dco7KxqNhh3r5nPtVX38OJVyFXJeaw/v3mLd0qmkpiRTo25jevYbo62P+yKbV3mTmpKCsbEx3w38OV/1sWv9PEKCfDEzt+CHYdNybRMHt//GhTNHSIiP47cdfhn7U1NT2LBkEo/u38LK2pYBo2dj71giX2Wxde0Crl4+j7m5BQNGTM61LB7cvcWapdNJSU6mZt1GfNd/NDKZjAM713Dm79+xLmYLwBffDqFWvcb50LCQK4E6DSMn4fIaDauXzCAlOZla9RrxXf9RevfOowe3s2PjUlZu+wtrG1sDS0J3jWyYw41gX0zNLPh+2AzKlM9ZJ7/vWMbFs3+QGB/Hom3+Gft9/tqDz1+7MTIyxtzCMl/XiETh8f/+3YAgCNMFQfiqsHW8QhCE3oIgGH73fgtqdToL125h/sQxbFsymxPn/Hnw5JmejZODAq/h/WndpKHe/pDbdwi5dYfNC2eyZbE3t+7eJ/jG7XxoULNyxW9Mmz6TFavWcvbsGR4/fqRn8/dfxylqZcXa9Zvo+ulnbNqwPuPYBfPmMHTYj6xYtRbvOfMxNjY2WMMrHtzwIUb5kL5T/6Ztzxn8s2tqrnad+y6hl9dhek/8k4SXMfwbdBwA+xIV6TpgGaVc3fOtITjQn7DQpyxbs5OBw8axdsWCXO3WLl/AoOHjWLZmJ2GhT7lyWTvIKF3WhTFeM6lctWa+NQBcCfQnPPQJS9bsov+wsaxfMT9Xu3XLFzBg+DiWrNlFeOgTrlz21+koz2ivWe+k40rgBcJCn7J4zW76DxvHutdoWL98PgOG/8ziNbt1ZaHVUL2WO/OWb2Xub1twLlmaQ3u3Gi7CyAjXieO5PngYgV0+x6FDO4qUL69nUn7MT0QePkLQZ1/xeOUaXEYOByBFqeTKN70I6v41wT2+o3TfHzBzcDBYwtPNBwjo1O+16Q7tmlLUtRxnKrclZPAkqv02FQBTu2JUnDgMv8Zf4tvoCypOHIaJrY3B+WclJMiPiNAneK84RK/BE9my2jtXu62rvOk9ZBLeKw4REfqEkKDzAOzdvIQuXw5g2qKdfNpjEHu3LDVYw41gX5Rhj5i67E96DpzMrrW/5mpXvV4zxnnvyLG/nmcHJiw8gNf8vbTp2pv9m+cZlL9anc78tVtZMOEndiyeyQnfizn6zYouZdgwdzJbF82gRYN6rNi6B4C4Fy/ZsOcw62ZPYt2cyWzYc5i4l/EG5Z+Va5f9iAh7wuyVB+k9ZAJbV+VeH1tWe/PD0InMXnmQiLDM+tizeSldv+rP9MU76NZjIHs2G14f14P8iAx7zMzlv/PdoIlsX5O7hhr1muI1Z0uO/b4nDlHEyoZZKw7TuvM37N+yxGANAFcvnyci7AnzV+2nz9Bf2LhyTq52m1bNoe9QL+av2k9E2BOuBV3ISPukSw9mLt7OzMXbDR6Av9IQHvqEBav30XfoeDatnJur3caVc+k39BcWrN5HeKi+hmhlBCFXLqJwcDY4/1fcCPYlMuwxU5f9wTeDJrNrTe7XSI16zfh59vYc+92bdGDiwv14zd9Dm64/sH9z7n3vx4BGZvRe//4LfDS/QhCEfHnlRVGcLIri7vet52Pj1t17lCruSElnR0xNTWjt2QDfgCA9m+KODriWK4ORkb6HWyaD5NRU0tLSSE1LJU2tRp6PG/y//4oUL1EC5+LFMTU1pWnTZvhfOK9n4+9/gVat2wDg6dmUq1eD0Wg0BAVdppyLC+XLa5/QbWxs3mkQfvfaSap6dEMmk1HCpRbJiXG8fB6Zw87c0gqA9PQ01GmpGbOzFc4VkDuVz2FvCJcu+tKsZTtkMhkVK1UlPv4lMaooPZsYVRSJifFUrFQVmUxGs5btCPA/B0Cp0uUoWarMO2nQ6jhH0wwd1d6ioxoymYymLdtxKYuOEu+oI/Cib4YGt0rVSIh/8VoNblk0BOo01KzjgbGxtgtwE6qiispZl2/Duno1Eh8/IenpMzRpaSiP/YWiZXM9myIVyhMbEABAbMAlFC206Zq0NDSpqQAYmZmBUf5em6p8A0lVPX9tulOXVjzbpvVwx168imkxG8ydHXBo64nypB+pMc9Ji41DedIPx0+a5EvDK4IDztKoRUdkMhkVhOokxL8kVqXUs4lVKUlMfEkFoToymYxGLToSHHBGmyiTkZSoHXQmJLzEVm74FyGvXTqNR7POyGQyXCrWJDH+Bc9jlDnsXCrWpJhdzoceyyJWGf9PSU40+O3dzbv3KeWctd+sz7lLwXo2datXxsJc+1XDqhUrEBkdA4D/leu416yCjbUVNlZFca9ZBf/gEIPyz0pwwFkaNe+QpT5eEJvtGolVRZGYEJ9ZH807EHTxjDZRJiNRVx+JCS+xlRv+kHgl4AwNmnfSaaih05CzPioINXI9/5VLZ2jUohMAdRu24nbIJTQaw79KGRTgg2cLbVm4vqUsXHVl4dmiA5cvnjU4r9dx+aIPni3aazVUqk786/qshHhcK73S0J5A/0wN29Yv4uvew/L1VvkV1y6dxqP5q2ukBgkJr7tGarz1GklOToSP+IM4GmTv9e+/QIGHowiCoAGmA10BS8BLFMX9WdKmAR2B44IgzAMWAjUAC+A0MEoURbUgCCWBpYCb7tQ7RVH0FgRhExAoiuJvgiBMBaoA9kAJ4AbQRxTF194V36LPA5gNvBqxThZF8YjugeEIoNAdEwAMFEUxJdu5SwMHgbmiKO4xuPCyoIyOwVGhyNh2UMi5eedeno6tJrhRp1pluvb9EQ0aPmvfmnKlShqsITo6Cgf7zE7A3t4BUbyd00bnQTQ2NqZIkaLExcUR+uwpMmRMmvgLcc+f06Rpc7p/8aXBGl7x8nkE1raZ3gdrW2dexkZgVcwxh+2+3/oS9vAaLlWbUrH2J/nOMzuqaCUK+8z8FAoHVNFR2GUZrKiio1AoHLLZ5Oxg34WY6KhsOhxz1SHPokOucCQmWv+G8y5kLwu5whFVtDKbBiVyRVab3MvizD9HaNi0lcEazB0dSQ6PyNhOjojAurr+6/p48V8UrVsSum0nitYtMbGywqRYMdKeP8fc2YmqK5ZiWbo09xcsJkX5fusJwKKEE4lPwzO2k56FY1HSCYsSTiQ9ybL/aQQWJZzeKa+Y6EjkisxzyBWOxKiUeoOrGJUSOz0bJ2KitQ9APfqMYeH0oezetBiNJh0vb/3QnrzwXBWJrSLzOrVVOBGrisx1MPE6zh7fxak/t5CWlsqIKesMyl+pisHJXp6x7SB/c7/550kfGtTRhqZFqWJwzHKso0JOlCrGoPyzEqtSIrfPLAs7hRMxqki9h5sYVfY6c8oYJPfsO5oF04axe+MSNJp0JszeYLCGGFUkcvvM89spHInN1ibe+Buildjp6tPY2ATLIla8fBGLtY2dYTqi9XXI7R1RReuXhSo6Mlt/4ZjRNgFOHN2L3+mjuLhWpmefERS1MsyxFBOtROGQ7frI1mfFRCuRZ+3X7LU2AJf9z2KncKCsS0WD8s1ObHSk3jVoJ3ciNtrAa+TYLk7+uZW0tFRGTl37TnokPiwfyhOuFkWxFtAFWCMIQtaRUqIoiu6iKE5COwA/K4pifaAW4Aj00dltA/xFUawhimIN4HUtrQnQQxTFSsBzYFJ+9AmCYAusAnqKolgX6ASs1u1X6/bXA6oBxll0AiAIQk3gKPDTuw7A35WnYRE8ehrKgbWLObh2CUEhN7l6U/ygGtRqNTdvXmfM2PHMmbeQCxf8uHIl+O0Hvge6D1vPYG9f1GkpPBb9336ARKFxcPdmjI2N8WzetkDOf3/+Imzr1aXO3p3Y1qtLcngEmnQ1AMnhEQR99hWXOnTFqWtnTBXyt5ztv83pv/bydZ/RLFh3lK/7jGLj8umFoqNZu6+Z9ttRun0zkuP71xRYPsfPnuf2vYd807V9geXxLpw+vo8efUaxcP0RevQZxcbfZhS2pEKjVfvPWbDqAL8u3oatnYIdG/IXFpNfkpOTOLxvM917Dvyg+b6OZu2/ZvryI3z67UiO7ft4B+FSOEpOPtTEzPUAoiiKgiAEAQ2Aw7q0zVnsugD1BUEYrdsuAjwVBMEKaAS0eWUoiuLr3Hh/iqL4yh22HliWT31pgAtwTBAyJphpAFcgGBgjCEJ7tANwOyAhy/lqAAeATqIo3spD/m/FQWFHZHR0xrYyWoWDPG/eB5+LgVStWIEilhYANKhTk+viXWpWyTlx7k0oFPYoozK9g1FRShRZvPMZNkol9vYOqNVqEhLisbGxQWFvT9Vq1SlWrBgA9eq5c+/uHWrVqp3n/IPPbuean/Z5xrlsdV7EZnoOX8SGY2X7es+hiak5rjVacffaScpVNjx+8BXH/zzAib+0E7Vc3SoRnSVsIjpaiVyh/8perrAnOou3V2tj+Gvk7Pz1535O6nRUcKucTUdkrjqyep1V0ZHYKQwPL8iu4dRfh3PVoPVi6f9Orec7q41+WZw5cYSgAD8mzlyar9e7yZGRmDtntgFzJydSIvW92SlKJTdHjgHAyNIS+9atUL94mcMm4e5ditWpQ9Q/JwzW8SaSQiOwLOXMK3+qRUlnkp5FkBQagbxZ5kRqi1JOqM4GGHz+k0f34PPPQQBcXKugis58M6CKjsQum8fTTu5AjJ5NBHY67+P503/Ss+9YANwbtWHT8txjVbNz9vgu/E7sB6Csa1ViozOv09joCGzlOd9W5YW6jduza+1Mg45xkNsREaXK2FaqVDgocvabl67eYPP+P1k+YzxmpqYA2Mvt9ObOREarqF3VsEnLJ4/u4ezf2vAjF7cqqKIyyyImOgK7bGVhJ3fMVmcRGV5qv9N/0rOftu26N27NxjzWx+lju7O0iaqoojLPHxMdaVBYi63CgZjocOT2TqjVaSQmvMTKOm+TEf85spcz/2jLorxrFT0dqih9rze8epum36e8apvFbDPvO83bdmPBr6PyrOH0379rNbhVIVqZ7frI1mfZKRz0QuNUUVqbyLCnKCNC8Rrxbcb+iSO/Z9qCjdja6d8Tc+PssV34nTwAQNkKVfWuwRhVBLaK/F4j7dhp4DXyIZFWR8nJx/AokfUOKAO6iaJYS/dXURTFsYWkSwZcy6KlliiKpUVRDAR6Ap5AE1EUqwMr0IbPvOIpoAKavy8xlVzL8yQsgtAIJampaZzw9aexe94GsE72CoJv3iZNrSYtLY0rN25TtpThM9orVhQIDX1GeHgYqamp+PicxaOB/iRQD4+GnDzxDwC+vj7UqFELmUxG3Tr1ePTwIUlJSajVaq5fD6FMmbIG5V+72Tf08vqdXl6/41qzNTcuHkKj0RD64ArmltY5QlFSkuIz4sTT1Wncv37mnePA23X6jPnLNjJ/2UbcGzbh7KnjaDQa/r19gyJFrPReZQLYye2xtCzKv7dvoNFoOHvqOO4e+V9h4RWfdPqcucs2MXfZJtwbNsEnQ8f1t+i4jkajwefUcdw93i3m+JNOnzNn2WbmLNtMvYZNMzTceYuGO1k01NOVxZXL/vyxfwdjJ8/B3MIit+zeyovrN7AsUwaLkiWQmZjg0P4Tok+f0bMxsbXNmBdQpn8fwg9qb8hmTo4Y6eKCTWyssaldm4SHD/Ol401E/nGKkt92A8DWoyZpcS9IDlei/NsXh9aemNjaYGJrg0NrT5R/+xp8/lYdvmTaop1MW7ST2h7NOX/6CBqNhntiCEWKWOUYcNnKHbC0tOKeGIJGo+H86SPUrt9Mm2bngHjjMgC3Qi7hVLx0njQ0a/c1XvP34jV/LzXdW3Lx7B9oNBoe/HsVyyLWBr1mjwzLnPh9I8gHx+KGzV2o7OrC07DILP1mAJ719PtN8f4j5qzezNzxPyIvlhnS0KBWNQKu3iDuZTxxL+MJuHqDBrUMW42kVYcvmb54B9MX76COR3POnzmaUR+WRa1yxNnbyu2xLFI0sz7OHM2sD7kD4nVdfVzLe320aP8VUxbuYsrCXdSq3xz/M3/qNFzDMpc28SZquTfj/Ok/Abh84SRCdfc8PzC36fhFxkTKug2a4XtaWxZ3xRCKvKEs7urKwvf0UerUbwqgFz8e6H+GUmXythpIm45fMGvJNmYt2UZdj6b4nj6m1XA75PV9VpGi3L39SsMx6no0pXQ5V1ZsPc7idYdYvO4QcntHfl28JU8DcNB6rr3m78Fr/h5q1G/BxTOvrhFtneT3Grke5IOj87vPM5L4cHwoT/gPwK+CILgBtYHXxQQcBsYLgjBYFwduD1iLovhAEITzwE/APABBEOxf4w3vKAiCgyiKSl2+p/KpLxVwEwShhSiKp3V5ugOBgC0QJYriC0EQiqEdlAdmOZ8K+BStF91SFMWFedDwRkyMjRnV73tGTZ9LerqGjq2aUr5MKdbt3E+lCi541q/DrTv38ZqzhBfx8fhdCmb97oNsW+JN84b1uRxyi14jvZDJZHjUro5nHgfwWTE2NmbQ4GFMnuhFeno6bdp+Qtmy5di2dTNubhXxaNCQtp+0Y8H8OfTv2xsra2t+/tkLACtra7p9+hmjRg4HGdSrVx/3+h75Lo/yVZvx4MZZ1k1tg6mZJe2+nZWRtnlWV3p5/U5qSiIHVw1GnZaCRqOhTEUPajXRLql458o/nNw7g8SXKg6sHIhjqcp0H7beIA116jUkONCf4f2/xszcgqEjf8lIGzP8B+Yv08bQ9h8yKmOJwlp1G1C7XgMALp73YcPqxcQ9j8V72jjKubgycYbhTaV2vYYEB15gRP+vMNMtUfiKccN7M3fZJgD6DhnNikUzSdXpqKXTEXD+LBt1OuZMG0tZFzcmGKijdr2GXAm8wIj+X2JubsGgLBp+Ht6LOcu0L7z6DBmdsUShVoP2IW7jqoWkpqYyc+JIQDs5s9+wcYYVhFrN3VlzqLZ6hXaJwoO/k3DvPmWHDubFjZuozpzF1r0eLiOHo9FoeH45iLu/aleHKFLehfJjR2nfdcng6aYtJNy5a1j+QK2tC1A0q4+ZvR0tH5zlzvRlyEy13ezjNbuIPHYWh/bNaH77H9SJiVzrpy2n1Jjn3Jm1As8L2oWV7sxcTmrM6yd45oUadT25dtmP8YO7YmZuQZ/hUzPSpvzUg2mLdgLw7cDxbFg6lZSUJKrXaUz1Oto3Rb2GTGTn+vmo09WYmprRa8hEgzVUrdOEG8HnmDq8I2ZmFnw7NDOEYtaYL/CavxeAg1sXEuh7lNSUJCYMbE2jVp/R8cshnD22k9shFzE2NqGIlQ3fDcub9/cV2n7zG36asQB1ejqdWjahfJmSrN15kEqu5WjiXpvlW/aQmJTMxAUrAK3TYu4vI7CxtuKH7p3p+7M2DOeHL7pgY231puzeSI26jbl22Y+fB3XTLVE4JSNt8sieTF+sXR3mu4HjWb90KinJyVSv24gadbX10XvIRHasm0+6rj56D5lgsIbqdT0JCfJlwhBtm+g9bGpG2rRRXzNl4S4A9m1ZzEWf46QkJzG2XzuatO5Gl68H4dmqG+uXTMJrSBeKWhVjwKjcV1d5GzXrNuZK4HnGDPoMM3ML+g/PjBqdMPIbZi7WrgLSa+A41iydrl2usU4jatZtBMCuzct49OBfZMiwdyxOnyG/5JrPm6hVrzFXL59n9MDPMTO3YMCPmRq8RnzLrCXbAOg9aBxrlkwnJSWZmnUaZmh4X1Sr04QbQb5MGdZJu4znkMywr1ljvsRrvvbt74Gtiwg8d5SU5CS8BrShUavP6PTVYM4c24V4zR9jE1Msi1rz/fCPN0zpvzKZ8n0iy8/MZkPIMvmyK9rwkuwTM61FUXyp27YG5qKN69YAycBIURR9dRMzl6MNB1EDO0RRnJPLxMzKaCdmlgRuAj/kYWLm6/S5ox302wFmwH2gM2AN7AdKAZFoJ4BaiqLYWxCE3mjDULrrwmj+BE6KovjWK0N542LBVkYeiLXI/1JL75MzDwzzkhcEHmUNX6GjIEj/CDquj6XzfPFpm7cbFbQGMeHtRh8A26uXC1sCiWmmhS0BgNpGhV8WorHh3xooCNLSC/8Ft4VxWmFLAEAmK/RbKnEp+Xuz975pVd2i0DvxJ3duvtcKKe1WpdB/07vyoQbhGQPtAs5rKmAliuIYA475YPrehjQIz0QahGciDcIzkQbhmUiD8EykQXgm0iA8E2kQnsnHMAh/fOfWe62QMm6VC/03vSuFf7VKSEhISEhISEhI/I9R4DHhoih+sCcVURSn5rZfEITJwGe5JLX9kPokJCQkJCQkJP4X+a8sK/g++VATMwsVURSno/0gj4SEhISEhISExAfmYwlr/JiQHkskJCQkJCQkJCQkPjD/E55wCQkJCQkJCQmJwkMKR8mJNAiXkJCQkJCQkJAoUKRwlJxIg/CPCJkmvbAlYJsU/najD4CnS+E3TaeEB4UtAYAXlu/+mft3xVSdXNgSAFDvz8u3twoWY/XHsSxfbM26hS0Bo4DrhS0BgHRj48KWwAvPBoUtAQB1orqwJZBsXfj9N0B6WuEvUWhfw7awJWg57VfYCiRy4eO4UiQkJCQkJCQkJP6zaGSSJzw70iBcQkJCQkJCQkKiQNFopEF4dqQoeQkJCQkJCQkJCYkPjOQJl5CQkJCQkJCQKFA0kt83B9IgXEJCQkJCQkJCokCRVkfJifRYIiEhISEhISEhIfGBkTzh/4/wD77G4g07SE9Pp3Orpnz3WSe99Cs3RJZs3MG9R0+YNmowLRq6Z6St2LqH85evAtD7iy60buyRPw1B11iyYRvp6el0at2M7z7rnE3DbZZu2M69R0+YOmoILRrVz9SwZTcXLl/RaehKq3dY0isoMIB1q38jPT2dNp904PMve+qlp6amsHj+bO7d/RdraxvG/DIZJyfnjHRlZATDB/3A19/0otvnX+VLw4XgEBZv3Ik6XUOXVk34/tMOeuk7//iLwyfPYWxkjK2NFROG/kBxB3sAjpzxY9O+PwHo3b0THZs3zpeGS4GXWblmHenpatq1bcvXX3bXS792/Tqr1qzj/oOHeP08lqaemfl4TZrCLfFfqlWpzIypk/OV/ysCLgfz27qNqNXpdGzbip7dP9VLv3r9JsvXbeLew0dMHjuSZo0b6qXHJyTQe+hPeHq4M2JQv3zr0Gg0bFm7kKuBFzAzN2fgyEm4VKiUw+7B3dusWjKD1ORkatZryPf9RyHLMnP/yMHt7Ni4jFXbjmNtY9gSYxqNhh3r5xFy2Q8zcwv6Dp9K2QqVc9g9vHeL9UunkJqSTPW6jenZdywymYzHD0S2rJpFakoKRsbGfDdgPOUrVjNIQ421s3Ds0JyUyGh8anfO1abKogk4tmuGOjGJq33HExd8E4CS33XD7ZfBANzxXsmzrYcMyjsrGo2GA5u9uRV8DlNzC3oOnklplyo57I7sWsIln8MkxMcxd/MlvbTgC8c5vm8FMpmMEmUEvv9xrkEaPpY+y76lJ5W8xyMzMubptv08WLJOL92iVHGqLfsVM4UdqTHPuTZ4PMmhEcg96yP8+nOGXVE3F671H0PkUcOX67Rv40mVeROQGRvxZNM+7i9Yq6+hdAlqrJqJmb2c1JjnXO07lqRnEQAIM0bj2K4ZAHdnryRs/zGD83+FokVjhF/HIzM25tn2/Txctl5fR6niVFk8AzOFVsf1oeNJDovArrE7wvTMsiji6kLIoLEoj+WjLD6C+gCwcfeg9LCRYGxE1JE/iNi5TS/d1NEJl/ETMbayAiMjnq1dRdzFC2BsTLmxv1DErSIYG6P6+zjhO7bmS8OHQvKE5+Q/6QkXBKGcIAgDClvH+0StTmfB2q0smDCK7YtnccL3Ig+ePNOzcXKQM2FYP9o00b9RnL98BfH+IzYtmM7a2ZPZ+ftx4hMS86Vh4dotzJ84hm1LZnPinH8uGhR4De9P6yb6g6zzgVf49/5DNi78lTVzprLz92P50qDVoWb1iiVMnj6bZas2cu7sKZ48fqhn889fx7CysmbV+m10+bQ7Wzas0UvfsHYlderVJ7+o1eksWLedhRN+YueiGfzje5EHT0L1bCq6lGXjnElsWziNlg3rsXzrPgCev3jJhj2HWec9gfWzJ7Jhz2HiXsbnQ4Oa31auZua0KaxduZwzPj48evxYz8bRwYExP42gZfNmOY7/4vPPGDf6J4PzzU3HktXrmT1lApuWL+Kkjx8PHz/Rs3FysOfnEUNp1cwz13Ns2L6LGlVzDlQN5erlC4SHPmHB6r30HfoLG1fmPmDbsHIu/Yb+woLVewkPfcLVoAsZadHKCEKuBKBwcM712LcREuRHROgTvFccotfgiWxZ7Z2r3dZV3vQeMgnvFYeICH1CSNB5APZuXkKXLwcwbdFOPu0xiL1blhqs4enmAwR0ev3DjEO7phR1LceZym0JGTyJar9NBcDUrhgVJw7Dr/GX+Db6gooTh2Fia2Nw/q+4deUcyrDHTFh8lK/6T2Xvuhm52lWt25yfZu7KsV8Z9ogTv69jxLStjJ//O5/2+jmXo1/Px9JnYWRE5bkTuPzlIHwbdaH4Zx0oKlTQMxGmjyV092HON/2Me/NXUXHSSABUvgFcaP45F5p/TmC3PqQnJhF1+ny+NFRdNJlL3frjU6cTJb7oiEwgPbYAACAASURBVFUlfQ2VvcfxbMfv+Hp05a73coRpowBwaNeMYrWq4NvgU843+wqXkX0wsS6a77KoNHsiwT0Hc75JF5w/7UDRiuX1TCpOGUPYnsP4t/iM+wtX4jpBWxYxfpfwb9Ud/1bdCfxcWxbRZ/JXFoVeHzodZUaM5s740dzs/Q3yVq2xKFtOz6T4d71QnTnJrQE/8GDGFMqMHA2AXfOWyExNudn3e24N7IN9566YOeWvz/pQaJC917//Av+5QbggCCZAOeA/NQi/dfc+pZydKOnsiKmpCa08PTh3KVjPprijA67lSut59AAePAmlVpWKmBgbY2lhjmvZUvgHh+RDwz1KFXfM0NDaswG+AUG5aCiDkZG+hodPn1GripChoUK50vgHXzNYA8Cdf29TvERJnIuXwNTUFM+mLbl4Qb8TDPD3o0XrtgA08mzGtatBaDTaDzf4n/fFydmZ0mXK5St/gJt371PK2ZGSTg7asmhcH59s9VG3WiUszM0BqOpWnsjoGAAuXr2Be82qFLO2wsaqKO41q+J/xfCPnoj/3qFEieIUL+6MqakpzZo24bz/RT0bZycnyru45GgTALVr1aSIpaXB+Wbn9p27lCjuTAlnJ0xNTWnZpDF+FwOz6XCkgktZjHLRId69R0zsc9xr13xnLZcv+tCkRQdkMhlulaqREP+SGFWUnk2MKorEhHjcKlVDJpPRpEUHLvv7ZKRvXb+YHr2Hkd8lbYMDztKoRUdkMhkVhOokxL8kVqXUs4lVKUlMfEkFoToymYxGLToSHHBGmyiTkZSofShLSHiJrdzeYA0q30BSVc9fm+7UpRXPtmk93LEXr2JazAZzZwcc2nqiPOlHasxz0mLjUJ70w/GTJgbn/4qQwNO4N+2CTCajnFtNEhNe8DxGmcOunFtNitnl/CjVhVP78Gz7NUWsigFgXUxhUP4fS59VrE51Eh48IfHRUzSpqYQdPIpj+xZ6NlZCBVQ+2utXde4iju1b5jiPU5e2KE+cIz0xyWANtvVqkHDvMYkPdRr2HcWpUyt9DZUqEH3GH4Dosxdx1KVbVaqAyi8QjVqNOiGRF9dF7Nvkr11oy+KxrizSCD90DId2+r+1aMUKqHwDAIjxDcCxXYsc53Hq3JaoU/kri4+hPgCKVqpMUuhTUsJC0aSlEXPqJLaNs5WrRoNxEe0Dj3HRoqRGRWXsN7KwACNjjMzN0aSmok4w3JkjUbgU2CBcEASNIAjTBEG4IgiCKAjC51nS2gmCECwIwjVBEE4KguCq239CEISuWew6CYJwWvf/4oIg7BMEIUAQhBBBELyy2D0UBGG2IAgBwGpgOVBFl/c+QRC+EAThSBZ7c0EQwgRBKPMG/a/OeVkQhLuCIAzLkuYuCMIFnf4LgiC46/aXEwQhShCEBbq0EEEQ8n8Hy4JSFYOjvTxj21Fuh1I3qHsbruXKcDE4hKTkZGLjXhB0/TaR0dGGa4iOwVGReRN0UMhRqvKr4RaRUSqDNQCooqOwt3fM2FbY26OKVua0cdDaGBsbU6RIUV7ExZGYmMjBfbv4qmevfOX9CqUqVr8+FHYoVbGvtf/jlC8Na2tDCpTRMTgp7DKPNaAusxIVHY2DfeYAzcHenuh81Ou7EhWtwtE+S7uwlxOVRx3p6ems3LCFwT98/160qKKVKBwy24Zc4UhMtrYRE61Ebp854JPbO2a0n0B/H+QKB8q6uOVbQ0x0JHKFk76GbIPwGJUSOz0bJ2KiIwHo0WcMezYvZnS/DuzZtJjPvx2eby2vw6KEE4lPM7+Om/QsHIuSTliUcCLpSZb9TyOwKOGU2ynyxHNVBHaKTO+crdyJ56qIPB8fGfYIZdgjlkz+lkUTe3Lriq9B+X8sfZZFcSeSnoVlbCeFRmBRXL9cX1wXcezUGgDHTq0xsbbC1K6Yno3zZ+0JP3A0fxpK6GtIfBaOeba6fREi4ty1DQBOXdtgamOFqdyWFyHaQbeRpQWmClsUTT2wLFU8XzrMnR1JDs1sY8mhEZg7O+rZvLgp4thRVxYdXlMW3doTfjB/ITEfQ30AmNo7kBoZmbGdoozE1F7/YTR00wYUbT6h+p6DuM6ez5NliwCIOXua9KQkauz/neq7DhCxZyfqFy/yreVDIHnCc1LQnnC1KIq1gC7AGkEQHAVBcAS2At+IolgD2AFs19lvArKOjn4ANur+vwVYKopifaAu0F4QhDZZbG1EUawvimJfYChwUxTFWqIodgcOAtUEQXDR2X4J+IuiqP/uPieOoijWBRoDXoIg1BAEwQzYD0zU6Z8E7NftB1AAV3Vpw4GdgiCY56m0CgiPWtVoWKcGA71+ZcqiVVQVKmBk9GFfgtSvVZ0GdWsy6JcZTF24gmoVXTE2+vAX0a7tm+jcrTuW78EDnFeO+1zg9r2HfNO13QfL8/8Lvx/9C4+6dXCwN8zDWRAkJydxeN8muvcs3Jdop//ay9d9RrNg3VG+7jOKjcunF6qewiRdnYYy/BHDJm/k+x/nsnvNFBLi4z5I3h+6zxKnzEPeuB4NT+9D3qgeSaHhaNTpGelmTvZYV3Yj6lTBfX78ltdc5E3caXzhAHJPdxKfhaNRq4k66Yfyr7M0Or2T2psWEHPxChq1usB03Jk6H7uG9fA4sRe73MrC0R6rSm5EF+Cn2D+G+gCQt2pN1PGjhHz5KXfHj6HcL5NAJqNo5Spo0tO51r0r13t2x+mLHpgVL1GgWt4VjUb2Xv/+CxT0xMz1AKIoioIgBAENAA3aQepNnc1GYIUgCNbAAWCRIAiv7sjNgO8FQSgKNAccBEF4dW5roDLwj257y+tEiKKYJgjCamAQ8DPaQfpEA/RH6DzpzXX6U0RRPKlLOyEIQgogAC+AFGCbLu2MIAiJurT8vcfU4SC30/PCRKpicMjiTX0bvbp3oVf3LgBMXbSK0sUNjx1zUNjpedCV0Soc5PnVsILSJfLnSZEr7ImKyvQeREdFIVc45LRRRmJv74BarSYhIR5rGxv+FW9z3teHzRtWEx//EiOZEaZmZnTs/Gn2bN6Ig9xWvz6iY3CQ55zAF3DtJpv2H2HF9HGYmZpqj1XYEXRDzDxWFUOdqkKOY9+GvUKBMioz1EIZFYVC8eEHs/YKOZFRWdpFlAr7POq4If5LyI1b/H7sLxITk0hLS8PS0oIBvb7Nc/5/H9nH6b9/B6C8W2WilZltQxUdiV22tmGncEAVlemZVkVFIlc4EBH2FGVEGL+M+Fa3X8mEkb2YvmADtnZv/j0nj+7B55+DALi4VkEVnentVUVHYifPpkHuQIyeTQR2Cq038PzpP+nZdywA7o3asGn5r3krCANICo3AspQzr3zCFiWdSXoWQVJoBPJmmXMlLEo5oTobYNC5z/21kwuntPMfylSoRkx0ptczVhVBMXnePeu2CifKutbA2MQUhWMpHIqXIyr8EWUqVM/T8R9Ln5UUFoFFycxjLUo4kRSm/0YgOVzJlV7auGPjokVw6tyGtLhMz6Zz13ZEHDmJJi0tfxpC9TVYlnQmOTSbhrBIgnr8mKHBuVtb0p5rNdybu5p7c1cDUGvjfOLvPsyXjuTwSMxLZN5/zEs4kRweqW8ToeRaH11ZFLHEsWNrvbJw6tqOyGPvUBYfQX0ApEYpMXXMfAtg5uBIapT+WzP7Dp25M04bmx9/8wZGZmaYFCuGvFUb4gL8Qa0mLTaWlzeuUVSoREqY/twkiY+bjyomXBTFBOB3oKfu73dRFOPR6tQA7jrvdi1RFCuIoph1xtLLt5x+DdBTEITGgC1w8v3/goKjkqsLT8MiCI1Qkpqaxknfi3jWq52nY9XqdJ6/0BbP3YdPuPvoCfVrGbbaglZDeZ5k0XDC15/G7oZoeKHT8Jh7D5/gng8NAG4VKxEW+oyI8DBSU1Px9TlF/Qb6k6rqezTi9Im/ATjve5bqNWojk8nwnreEtZt2snbTTjp3/ZzuX/U0eAAOUNnVRb8s/AJo4l5Lz0a8/4i5q7cwb/xw5MUyJ7d51KxKwNUbxL2MJ+5lPAFXb+BRs6rBGoSKbjx7FkpYeDipqamc9TlHQ4/8rXrzLlRyc+VZaBhh4RGkpqZy6pwfjTzq5enYiaNHsHvDKnatW8HgPt/RtkVTgwbgAG07dsd7yVa8l2ylnkczzp0+ikaj4c7t61gWscIuW0y1ndweyyJFuXP7OhqNhnOnj1LXoyllyrmycusxlqw7xJJ1h5DbOzBz8ea3DsABWnX4kmmLdjJt0U5qezTn/OkjaDQa7okhFClihW22Qbit3AFLSyvuiSFoNBrOnz5C7fraybO2dg6INy4DcCvkEk7FSxtUHnkh8o9TlPy2mzY/j5qkxb0gOVyJ8m9fHFp7YmJrg4mtDQ6tPVH+bVgISJNPejBuzn7GzdlP9XotueRzGI1Gw8M7V7EsYpVr7PfrqF6vFXdvaldLeRkXgzLsIQrHvJfHx9JnxQVfp0j5MliWKYnM1JTin3Yg8thpPRtTuS2vJiK4jOzHs+0H9dKLf97hnUIfnl8OoahrWSzL6jR070DEEf0VPUwVmRoqjB3A0y37tQlGRlp9gHW1ilhXq0jUifx5gF+VhUWZkshMTXDu1h7lX68vi3Ij+hO6U78snD9tT/jB/JfFx1AfAPG3b2NRshRmzsWRmZhg17IVsef1r7eUiHBs6mj7U4syZZGZmZMWG0tKRATWtesCYGRhQdHKVUl6/Oid9BQ0hRmOIghCRV348L+6f3PEHAqCYCwIwnJBEO7pwpD75SXtXShoT/gPwK+6H1sb8Ec7mN4gCEIlURRvow0/CRZF8dUj5iZgie7/IwBEUXwhCMI5YDwwA0AQhNJAqiiKmW6WTOIAveAtURSjBEE4AewC5omiqMmD/t6AnyAIDkAHYCkgAmaCILQQRfG0IAgtAVPd/hKAGdoHiG26eHBL4HYe8nojJsbG/NTvW0bNmI86PZ1OLZtQvkxJ1u48QCVXF5q41+bW3fv8MmcZL+Lj8Qu8wrpdB9m+ZBZp6jSGTJwFQBFLCyaPGICJsXG+NIzq9z2jps8lPV1Dx1ZNKV+mFOt27qdSBRc869fh1p37eM1ZotVwKZj1uw+ybYk3aeo0hk6YqdNgyeSRg/KlAbQx3v0HD2faxJ9Rp6tp3bY9Zcq6sGPrRlzdKlK/QWNaf9KBxfNnMajvt1hbWzP650n5yut1mBgbM7rfN4z8dZF26bOWnpQvXZI1uw5RuUI5mrjX4rete0lISmbCgpUAONnLmTf+R4pZW/HD553oM17r4ezTvTPFrK3yVQ7DBg/Ea9JU0tPT+aRNa8qVLcPmrdup6OZKwwYeiP/eYdqvs3jx8iX+AZfYun0Ha1cuB2DUuPE8efKUxKQken7/A6NGDKde3Tr50vHjwL6MmzqT9PR02rdugUuZ0mzYvgvBtQKNPdy5fecuk2bN4+XLeC5cuszGHXvYtHyRwXm9jVr1GnHl8nlGDeyOmbkFA3/MfOH1y4jv8F6iXcLrh0FjWb1kBikpydSs05CadRu+7pQGU6OuJ9cu+zF+cFfMzC3oM3xqRtqUn3owbdFOAL4dOJ4NS6eSkpJE9TqNqV5Hu3xkryET2bl+Pup0NaamZvQakpeXdvrU2roARbP6mNnb0fLBWe5MX4bMVNvdP16zi8hjZ3Fo34zmt/9BnZjItX7aKTapMc+5M2sFnhe0nuw7M5eTGvP6CZ5vo0rtpty6co5fR7THzNySHoMyV0eZ+/PnjJujHeQd3r6Ay35HSU1JYsqQVjRo8RntvxhKpZqNuX3tPN6ju2BkZEyXb0dT1DrvS0Z+LH2WRq3m1s8zqbt3DTJjI57tOEi8eA/X8cN4fuUGyuOnkTeuj9ukkaDREHMhkJvjMt+AWJQugUVJZ1R+l96Qy9s13Bg1g/qH14OxEU+37Oflrbu4TRrO86DrRB45jaKJB8L0n0ADKr9L3BipDYUyMjWhwT/apfPSXrzkSt9x+Q5H0ajViL/Mos6u1ciMjQndqS2LCuOGEnf1Bsq/zmDXyB23CSPRaDTE+l/m1vhsZVHCmZjzgW/I5e0aCrs+AEhX83jpItzmLkRmZEzUsT9JeviA4j/0I0G8zfPzvjxd+Rtlx/yM4xdfggYeztG2SeWhA5T72YsqG7X1En38KIn3772bngKmkOO4VwHLRVHcJgjCt2jnD2afbfsN4Aq4oQ0tDhYE4YQoig/fkpZvZK9WjHjfCIKgAaYBXYEigJcoivt1ae2AWWgfApTAQFEU72Y59g6AKIpuWfY5A4uAV66IF0AfURRvC4LwEOgkiuJ1na0JcAjtKim3dXHh6LzgfwElRVF8451Fd86dQFu0A/rFoij+pktzRzsgLwrEAz+KonhJEIRyQCDaB4m2gAwYIoriubyUWdT1CwVTGQagkX0cL0eiLEoVtgScEh4UtgQAXljm3XNYUJiqkwtbAgChvH+vsKEkq00LWwIAsTXrFrYEjAIMX9WnIKhnFvR2owImqGmfwpYAgDqx4GK184qp9cfxCZL0tEK/pWJfw7DvDBQUdU/7FXoQ9fW74e+1Qqq5OufpN+nmIv4LKERRVAuCYAxEA26iKCqz2B0BNoqiuE+3/RvwSBTFeW9Ke5ffUNBXynxRFKdm3ymK4nHg+OsOyjr4zrIvHOjxGvty2bbTgE65mLYANr9tAJ6F7aIo/pJLfpeA17rORFEck8fzS0hISEhISEj853nfnnBBEGzRhhdnJ1YUxazLlZUGnomiqAbQDcRDdfuzBuGXAbLG9DzW2bwtLd98HI+rHwBBEG4AacAnha1FQkJCQkJCQuJ/iQJY0WQkMCWX/dOAqe87s4KgwAbhoigW+quPrIiimGPmmy6wflgu5r2ze9fzmMdDwPAva0hISEhISEhISBjCYrThv9nJ/tGOJ0BJQRCMs4SjlNDtz8pjoCzwKtg/q/f7TWn55n/GE54boiiuA9YVtg4JCQkJCQkJif8y6e85HEUXcvL6r+Rl2kUKgnAFbUjzNt2/wVnjwXXsBfoLgnAA7eTLbkCTPKTlm//pQbiEhISEhISEhETBU8irowwCNguCMBmIAb4HEAThKDBZFMVAtB+S9ADu6I6ZLoriqxUa3pSWb6RBuISEhISEhISExH8W3ZLYOT6kIYpihyz/VwODX3P8a9PeBWkQLiEhISEhISEhUaD8Vz41/z6RBuESEhISEhISEhIFSiGHo3yUSIPwj4h/njcobAmUsYsvbAkAFElPKmwJnE18f19RfBfMU9MLWwKWpmmFLQEAC5PUwpZAYtrH8bGej+FDOen18/cZ9/fNp+3WFLYExv9ztbAlAPAiMX9f9XyfONsUfv8NkJpe+GXxOLnwNQAU/qe9JHJDGoRLSEhISEhISEgUKFI4Sk6kQbiEhISEhISEhESBIoWj5MSosAVISEhISEhISEhI/K8hecIlJCQkJCQkJCQKFCkcJSfSIFxCQkJCQkJCQqJAKfwlBj4+pHAUCQkJCQkJCQkJiQ+M5An/f4RGo+HYjpncCfHB1MyCbn29KVG2qp5NSnIie1eORBX5GCMjYyrWbEGbL0YDEOx7gH/2zMPazgmA+q2+oW7TLwzWsGP9PEIu+2FmbkHf4VMpW6FyDruH926xfukUUlOSqV63MT37jkUmk/H4gciWVbNITUnByNiY7waMp3xFw5c502g0bF6zmODAC5ibWzB45ARcXIUcdvfv3mblopmkpCRTu15Deg0YiUwmY9uG3wgK8MPExBQn55IMGulFUStrgzX8sXUW4lUfTM0t+WLALEqWq6Jnk5KcyPZlP6GKfILMyIjKtVvQ/qtRAKSlprBn9XiePbhBEStbegxbiNyhZL7K4uBmb25dOYepmQU9Bs+ktEuVHHZHdi8h0OcwCfFxzNl0KWP/wS1zuHszAIDU5CRexKnwXn/BYA17NszlerAvZmYW9Bo2nTLlc7aLQzuWcfHsnyTEx7FkW2YeJ/7Yiu/JgxgbGWNlY8f3Q6eicChhkIZXOravW8A1Xfvs9+MUylWolMPu4d1brFs6jZSUZGrUbcw3/UYjk2lflf7z525OHtuLkZERNet68lXvHw3WsHfjHG4EncPM3ILvhs6gTPmc9XF4x1Iu+vxBwss4Fm27mLH/3N978Dm+C5mRMeYWReg5cDLFS1cwWMOBzd7cCj6HqbkFPV/XJnYt4ZKuTczdfEkvLfjCcY7vW4FMJqNEGYHvf5xrkIYaa2fh2KE5KZHR+NTunKtNlUUTcGzXDHViElf7jicu+CYAJb/rhtsv2o/T3fFeybOthwzKOzdGDKhAw7oKkpLVzFoi8u+9lzlsWjd14LsvyqDRQLQqhekLb/E8LnN5zq+7lWJY3wp0/MZPb39e0Gg0HNrsza0rPpiZWfL14JmUyqVOjuqu08T453hvCszYHxMVys6VXiTGv0CTnk7HHj9RuXZTgzUU9j3klY7C7i80Gg37N87mRrD2Ov12yK+UzuU6/WPnUgJ8DpPwMo4FWwNypF/x/4f1C0cx1nsXZSpUzZGeFx0fw33kQyCFo+TkP+UJFwShnCAIAz5gfs0FQWj7ofK7E+KDKuIRP3r/Rede0zmyZVqudo0++YHhs44xcOoBntwN4s41n4y0qvXbM3jaIQZPO5SvzjMkyI+I0Cd4rzhEr8ET2bLaO1e7rau86T1kEt4rDhER+oSQoPMA7N28hC5fDmDaop182mMQe7csNVgDwJXAC4SFPmXxmt30HzaOdSvm52q3fvl8Bgz/mcVrdhMW+pQrl/0BqF7LnXnLtzL3ty04lyzNob1bDdYgXvUhKuIRY+Yf57M+0zi0Mff6aNrhB0bPPcKPv+7n0b9BiFe19XHp7H4si9owdsFfeLbrxfHdCwzWAHDryjmU4Y/xWnSUL/tPZd/6GbnaVa3TnJG/7sqx/9Pvf2bs7P2Mnb0fz096UsO9lcEargf7Ehn2mOnLDvPNoEnsWDMzV7sa9Zoxfva2HPtLu1TCa852Ji3cS52GrTmwdbHBGgCuXT5PRNhj5qw8QO8hXmxZNTtXu82rZ9N76ATmrDxARNjjjPZ5KySQ4ICzzFi8g1nL9tC+27cGa7gR7Isy7BFTl/1Jz4GT2bX211ztqtdrxjjvHTn21/PswISFB/Cav5c2XXuzf/M8gzXcunIOZdhjJiw+ylf9p7J33WvaRN3m/DQzZ5tQhj3ixO/rGDFtK+Pn/86nvX42WMPTzQcI6NTvtekO7ZpS1LUcZyq3JWTwJKr9NhUAU7tiVJw4DL/GX+Lb6AsqThyGia2NwflnpUFdOaVLFOHrgQHMW/4vYwa75bAxNoIR/V35ccJVev94mbsP4/m8Y+ZgxtHeHPfadoRH5m8N7NtXzhEV/ohfFh3ji/5T2b9+eq52r7tOTxxcTa0G7Rg9ez/f/jiP/Rtyr9M38THcQ+Dj6C9uBp8jMvwRk5ce4esBU9i9LvfrtFrdZoyZtTPXtKTEeM4c20Y5txoG5/+Kj+U+8iHQIHuvf/8F/jODcEEQTIBywHsbhOvO+SaaAx9sEC4Gn6Rmo67IZDJKV6hFUkIcL2Ij9WzMzC1xqaz96I+JiRnFy1YhLib8vWkIDjhLoxYdkclkVBCqkxD/kliVUs8mVqUkMfElFYTqyGQyGrXoSHDAGW2iTEZSovaDQAkJL7GV2+dLR+BFX5q2bIdMJsOtUjUS4l8Qo4rSs4lRRZGYGI9bpWrIZDKatmxHoP85AGrW8cDYWFu9bkJVVFGROfJ4GzeDTlHHU1sfZVxrkpjwgrhY/bIwM7ekQhUPQFsfJcpV4bkqIsvx3QCoVr8td2/4o9FoDNZx/fJp3Jt0QSaTUc5Nq+N5jDKHXTm3mhSzc3jjuYLPH6VOow4Ga7h26QwNmndCJpNRvmKN12ooX7FGrhqEau6YmVsC4OJWg5joCIM1gLZ9Nm6ubZ+uQnUS4l8Qm61dxKqiSEyIx1XXPhs370jQxbMAnDq2n46f98LU1AwAG1u5wRquXTqNR7POyGQyXCrWJDE+97JwqZh7fVgWscr4f0pyYoaH3hBCAk/j3jT/beLCqX14tv2aIlbFALAupjBYg8o3kFTV89emO3VpxbNtWg937MWrmBazwdzZAYe2nihP+pEa85y02DiUJ/1w/KSJwflnpUkDBcdPafvBG+ILrIqaoLAz0zeSyUAGFubaj6sULWJMlColI3l4vwqs3HiffFyiAFy/fIq6uuu0rK5O4nKpk7JuNbHJ7TqVyUhK1HrvkxJeYmPnaLCGj+EeAh9HfxESeJr6umskP9cpwJHdv9G6a19MTM1yTc8LH8t9RKJweO/hKIIgaIDpQFfAEvASRXG/Lq0d4A0YA0pgoCiKdwVBOAEsE0Xxd51dJ2C0KIotBEEoDiwDyujOt1MUxVk6u4fALqAlEAI0AFwEQbgC3AV2A71FUeyoszcHHgIeoig+fo1+vXMKgjAB2AnYABbAEVEUxwmCUB0YBBgJgtAa2CWK4mxBEDoAE3S2KcBPoij6v1Oh6oiLicBGXjxj20buTFxMBNa2uXfGiQlxiFdO49H6+4x9ty7/w6N/A1E4laNdj18oluV8eSEmOhK5wiljW65wJEalxFae2UnFqJTY6dk4EROt7eh79BnDwulD2b1pMRpNOl7eGw3K/xWqaCUK+8zfLVc4oopWYpdlUK+KViJXZLVxQBWds5M9888RGjY13PsbFxOJrdw5Y7uY3Ik4VQQ2trl32InxcdwOPkPjT77THq+KwFahPd7Y2ASLItYkvIylqLWdQTqeZzkPgK3cieeqiLcOuLOjUoYSrXyGWzUPg44DiI2OxC6bhtjoSIM1APidOki12p4GHwfatie3z2x7dgpHYlSReg97MapIvXZhp2vDAOGhj/j35v+xd95hUR3fH36XpYmAwC7NLpZrFwUBBXuNiaZoEpOYqInGWKLG3lvsvUVj1xhLTNTEJGrsIvZe8Yq9IHVBVIqwu78/FoEVVHYD2L6+3AAAIABJREFUQr6/eZ/HR3bn3J3P3pk79+y5Z2bOsfnnxVhZW/Nxl354VTTtEfMjTZRxe6jcideYdi4O7tzIvr9+Ii0tlX5jl5tUv0FDZLb2MKVPRD28A8C8MZ3Q6XS07tCLKt7mtcnLsC3uTtL9TOcu+UEEtiXcsS3uTvK9LO/fj8S2uHtOH5Fr1CobomJSMl5HxaagVlkTG5fpZGu1emYtCuOnhb4kJWu5H57E7B/DAAjyVxETm8L12+bvKPxivyiW3iY5Otw50Kp9b5ZM6U7IP+t5lpJEjxGm94vCcA+BwjFexGuicFYbX6ePTLhO7928QlxMBNXrNGTvNvPuY1B47iNvApGOkp38ioRrZVn2BtoBSyVJcpMkyQ1YC3wmy3JNYD2wLt1+NdA5y/Fdgee9+idgvizLfhh2Xn1LkqQWWWwdZVn2k2X5K6A3cEWWZW9ZljsAW4HqkiSVS7f9CDj2Mgf8JZ8ZD7SVZdkH8AZ8JUlqLcvyReBH4Kf0+qZKklQeGA28lW7fDdiU67OWh2i1aWz+cSD+zT/Hxa0UAJJ3E/pP30uvCdsoX60+W5cPe+O69v/zKx2/HMis5dvp+OUAVv2Q8yPZN8XWX9agVCoJapy/DzS02jQ2LBpE/ZadUKW3R2Hj7NEd1PJriYVFwW2zfDz4b+7euEKLdzu/3jgf0Om0PHmcwOjpq/i4cz8WzRhRIFGlRq07Mn7hdt77rD87N7/5Ldl12jSiI+7QZ8wqvug7nV+WjiXxacIb1/EmUSoVvNemOF37nea9zse4cfspn3cojY2NBV98WJrl624XqL6zR/6mbsP3GPPDProNWcyGRcPQ6fJvvYnCeg/JSkGNFzqdji0/zeD9Lwa90Xr/C/eRVyHSUbKTXxMzVwDIsixLknQGQ4RaD5yXZflKus0qYJEkSQ7AFmCOJEnPn3k2Ar6QJKkohpQPV0nKmHTnAFQBdqe//ullImRZTpMkaQmGiPVQDE76qFzoz/qZSmCGJEn1AQXggcEZ35nDca2A8kBwFr2WkiS5y7Js1vP1E3vXcTr4VwBKlKtBguZhRlmCJgJH55wjRH+uGYOLexnqtcwcnOzsM38Z12n4Ibt/zTmP+kX2bt9E8O6tAJSrUBVNlkd/mtgonF2Mf7E7u7gaPR7UxEbinB55PLL/Lz79ajAAdeu3YPUPOefh5cQ/f21m3z/bAChfsQqxWVJINLFRuKiMdRgi31ltoo1sDuz5mzMnDjNq0vxcP/I/uns9Jw4Y2qOkVw3iNZkRu0eaSBxdcm6PLSvHonYvQ1DrzIiSo4s78bERFHPxQKtNIznxMXb2TrnSEbJrA0f3/QZAaa/qxMdm6ojXRFLsJTpexdkjO2j/5chc2x/YsZGQvVsAKFO+GnEvaHBSmfa4PPTCMXZsXs6ACSsy0kFyw57tmzi4y5DWUK5iVTQxmX0vLjYKZxdjHc4ubkb9Ii5LH3ZWueFbr0n6Y/JqKBQKHifE41js1VGlgzs3cnjPZgDKVKhm3B6xkTi5mJ46AOAT+BYbl+WcL/sih/7J0ifKV8/WHqb0CSeVO2Uq1ERpaYXKrSSunmWJibhD6fI1TPsCryA5PJIiJT2IS39tW8KD5AeRJIdH4tLIL8POtqQ7moPZJ8S9jg/aFKdtK0OUNjTsMW5qm4wyN5UNMbHPjOwrehnSgMIjDDnf+0Ki6dShFCWOF8HT3ZbV830BcFXbsHKuD90HnEETn/pKDSG71nM8vU1KvXCdPjKxTY7v30L34UsAKFvJm9TUZzx9HPfaVKHCcA+BwjFeBO/cwJG9huu0dPnqxMUYX6fFcnmdpiQ/5eG968wf/yUACfExLJn+LT2GLMjV5MzCch8RFDyFYnUUWZYTJUn6A/g0/a0/ZFl+mu6g64G6siy/bLTLPsXdmKXAWUmStgFOwN5cSMr6mQMAZwwpLMmSJC3FkGqSEwpgpyzLX7yk3GT8mn2GX7PPALh2/gAn9q6juv/b3L95Hhs7hxwfI+7dMpeUpMe062Ls4D6Oj8qwl8/uQ+2ZuxUXmrX5iGZtPgLg/KlD7N2+Cf+gVty8dgk7O3ujVBQAJxdXihSx54Z8Ea9K1Tmy/2+av/2xoczZFfnyaSpX9yX04kncPXP/a77VO+1p9U57AM6cPMI/f22mfsPmXJcvY2dnb5SKAuDsoqZIkaKEXb1EBakawft20jr9+HOnj/Hn5vWMnboQG9uXNWd26rX4lHotDN306rmDHNm9jloBbbh34wK2dg45PkL859d5JCc+of1XxhOpqtZuwpmQ3ylT0ZtLJ3ZRvqp/rn8MBLX8hKCWnwBw+cxBQnZtoHb9t7hz/QJF7OxNfqwb+eAmiU8TKFvRO9fHNH6rI43f6gjAxdPBHNjxC76BrbkVdhFbEzXcvXmVdUsm8u2oH3AsZloedvM2H9E8vX+eOxVi6J8NWnLj2iWKFLXPNu/AyUVNEbuiXJcvUr5SdQ4f+JvmbQz9s45/Y0IvnqJKDV8iHtxBm5aKg+Prb2iNWnekUWvDubh0OpiDOzfgE/gWt8MuUMTOwaRzEfXwDm6eZQC4fCYYN8/SuTquQatPaNAqs08c+mcDdczsEzV8m3HmyHb8G7/Pk4Q4oh/ezvPIW9Sf+yjTqxPhv/yNk38t0hIekxIRTfSuEKTvB2RMxnRtHoQ8crbJn79lezhbtocDUM/XhfbvlGBPcDTVJAeeJKYZpaIARMemULaUHU6OVsQnpFLX25k79xK5eecpbT/PXJnj1+X+dBtwOlerowS1/JSglobx4sqZgxzetZ7a9dtw9/oFbO3sc52KAuCs9iTs0jH8Gr1P5IMbpD1Lwd7x9ddKYbiHQOEYLxq2/oSGrQ3XyKUzwQTvXJ9xnZqioYidA1NXHMp4PW9cV97/fFCuV0cpLPeRN41OpKpnI7+c8K7AREmSKgK1gWMYnOmVkiRVlmX5Kob0k7OyLD9OP2Y1MC/9734Asiw/liTpEDAM+B5AkqRSQKosyznNFEkAimV9Q5blmPSc843ADFmWTe0GTsDDdAe8BIZc98VZ6su6FtAuYKwkSdVkWb6crreuLMvGa3+ZScWajQi7EMz8YS2xsrbl3S8nZ5QtHvsePcf/ziNNBIf++hG1pxdLxn8AZC4jdXzPWuRz+7GwUFLEvhjvfZXzyiavoqZPEBdOH2ZYz3extrHly2/HZZSN/e4Txs8xzCLv1GMYK+eP49mzZGrUCaRGnUAAOvcaxYYVM9HqtFhZWdO5V24eTGSntm89zp06Sr/uH2FjY8s3/UdklA39tjPTFqwB4MteAzOWKPT2CcDbtx4Aq36cTWpqKpNG9QcMkzO79RlikgapVkOungtmxqDWWFnb8mH3zIjlvJHv02/SVh5pIti/bQmuxb1YMNrwA6Bei8/wa9wB30bt2fTjUGYMbEUReyc+6Z37qFJWqtZuSOi5Q0zq/xbWNkXo2CNzkJ4xrD2DpxoiP9vWzeLMke2kPktmXO9mBDT5gNYdegOGVJTa9d8ye/CuXqcBl86EMLpPW6xtbOncK3OG/8RBHzFqpiEra/PaOZw8tINnKckM+7olgc3ep+3HPdmydg4pyYksm2V4SuKi9qTXsHk51vUqavkEcuH0YYZ88z42NrZ81XdMRtno/p/y/VzDaiRf9BhqWKIwJYWaPvWp6VMfgIbN2rFi4QRG9v0YS0sruvUbZ/I5qVanAZfPHmLct29jbW1Lp96Z7TF50IeMmGmIgG1dO5tTIYb2GNmjOfWbfcDbH/Xi4I4NXL14HKXSEjt7Rz7vk/unRc953icm9jP0iU++ydQwfWh7hkzL7BOnDxs0jO1l6BNvfdibyrUCuXrhCFMGtsPCQkm7TgMp6mBadM177SxUjfywVjvT9NZBwiYsQGFluOXcXbqRqB0HcX2rEY2v7kablMSFboZrODXuEWGTFxF01BBBDpv0A6lxL5/gmRuOntJQz9eFX5b6ZSxR+JxV83zo2u80sZpnrNpwh4VTa5GWpicyOoVJc6/+q3qzUqV2Q0LPBTOl/1tY2djSsUdmu84a9gEDpxqixH+um8nZ9Ot0Qu+m+DdpT6sOvWnbaTC/LhtL8PafUCgUdOw5yeS+WRjuIVA4xotqtRtw5UwwE/q2wcrasEThc6YO7sCwGYb+9/vPszkd8jepz5IZ/U0z6jVtT5uPepn1vXOisNxH3gT/KykkeYkir/Md0ydmjsfgrNqRfWLmZAzOf8bEzCzHhgHIslwxy3sewBzg+WLSj4EvZVm+mj6J8h1Zli+l21oCv2NYJeVqel44kiQFAv8AJWRZfuVonsNnlgF+Tf8u9wENcE2W5XHpueZb0w99PjGzJYaJqUUAa+CwLMsvX6crCxsOF/yU5tLO5k88ykvsrMxbBiwvuR1XOCa22FgW/D5jRaxMWxM5v7C1fPXj/zfB01Sb1xu9AVK1Bb+4lc7P9DX+84Mprd983vyLDBsfWNASAHicVHBzOp7j4Vjw4zdAqq7gz8XTlILXAPC+n7LAPeCDlxPz1MdpVM2uwL/TvyW/nHAHWZZflybyxpAkaRTgKcty74LW8iqEE56JcMIzEU54JsIJz0Q44ZkIJzwT4YRnIpzwTAqDE37gUlKe+jiNqxcp8O/0bykUOeH5iSRJl4E0DJMmBQKBQCAQCARvmIIPMxY+8twJl2W5UP0ykWU520wJSZK6AX1yMO8iy/K5/FclEAgEAoFAIPj/zP98JDwnZFleDpi+04FAIBAIBAKBwGR0YmJmNv5fOuECgUAgEAgEgjeH2DEzOwU/s0cgEAgEAoFAIPh/hoiECwQCgUAgEAjyFTExMzvCCS9EvF1kT0FLgGQIL1aloFWQrCv4ZeCCip4qaAmFBq0y99vI5ydPrAp+O+ZK2oevN3oD6JQFv/TZ+4VgaUCA4Tu/LmgJBE5Y/HqjN4DSuuCXB0xSmrYFfX5hoSj4JU1tFHEFLSGdNgUtQGzWkwPCCRcYURgccIFAIBAIBP9biG3rsyNywgUCgUAgEAgEgjeMiIQLBAKBQCAQCPIVsTpKdoQTLhAIBAKBQCDIV8TEzOyIdBSBQCAQCAQCgeANIyLhAoFAIBAIBIJ8ReyYmR3hhAsEAoFAIBAI8hWRjpId4YT/hzhy7gqzfvoNnU7Hu03q0+Xdlkbl6/7eyx/7j6K0sMDJ0Z4xPTrh6eoCgP+n31K+dHEAPFTOzB78jVkazpw6wbIlP6DT6WjRqg0dPvrEqDw19RlzZk7jxvVrODg4Mnj4aNzdPTLKo6Mi6fPNl3T8rDPvt//ILA0Aer2e1UvncfbUUWxsbOnZfwReFaRsdjevX2XRnMk8e5ZCbd96dPm6HwqFgqMh+/ht/Uoe3LvDpNnLKF+xsskajp25wLyVP6PT6XineSM+/6CtUfm5y1eZv3IdN+7cY9yAXjSp75dRtuinXzh6+hwAXT58l2ZBASbXX1g0ABw/c44Fy9ag0+l4u0VTPuvwrlH5+cuhLFi+hpu37zJmUF8aB2bW1eT9T/AqUxoAN7WaKaMGm63j1KlTLF2yGJ1OR8tWrfnoo4+NylNTnzFr5kyuXw/DwcGRYcOH4+7uwf79+9i8+bcMu9u3bjFv/kLKly9vsoZjZy8yd+V6tDodbZs15IsP3jYq37DtH/7cG2y4Tos5MKLXl3i6qQHYvj+E1b/9CUCXDm1p0yTI5Pqh8PQLgH5fl6eej4rkFC2T58lcu/Ekm03zhq58/mFp9HqI1TxjwuxQHiWkZZR3fK8kfb4qz9ufHTZ6PzfUXDYZtzaNeRYVS3DttjnaVJ0zErfWjdAmJXP+q2EknL0CQInP36Pi8J4AhE1ZzIO1v5tUd1aOnrvM7DWb0On0tGsaSOd3WxmVr/97D3/sO4ylUomTgz2jvvkcT1dVRvmTxCQ6DppAI99aDP6yo1kajpwPZebareh0et5r7E+Xds2Nyn/efoA/DhxDqbTA2cGeMV93xFPtwqkrYcz+OfO7334YxeTeX9DYt4ZZOo6fOc+8FWvT+2djOrVvZ1R+7nIo81f+zM3bdxk7sA9N6vsDcObiZRas/DnD7u6Dh4wd2IeG/r4mazh29gJzV65Hl36dfv7BOy9okJm3aj037txj/ICeNKlXN6Ns0dpNHDl9HoAuH7ajeaC/yfU/p7C0iaBgEE74v0SSpMbATFmWs40CkiT5At/JsvzZv61Hq9MxfdUmFo7og7vKic4jZ9DQpwZeJT0z6ytbip8mNcDWxprfdh9i/vrfmdLvSwBsrK1YP3X4v9Og1bJk0XzGT5qOSu3KoP698AuoR+nSZTNsdv+zA3t7e5asWEvwwX2sWbmMIcNHZ5SvWLaYOr5+OXy6aZw7dYyI8HvMW7qRMPkyKxbNZNLsZdnslv8wi6+/HUJFqRpTxw3i3Olj1PatR6kyXgwcMZllC6ebVb9Wq2P2sp+YM3YIbioXug0ZS1DdOpQrVSLDxt1VxYhvu7Phjx1Gxx45dY5rN2+zavZEUlPT+Hb0ZALq1KKoXZH/nIbnOuYuWcms8SNxVanoMWgEgX4+lC1dMsPGTa1ieL+ebNz6V7bjbaytWTF3msn1ZtehZfGiH5g4aTJqtZrv+vclICCA0qXLZNj8888/2Nvbs3zFKg4ePMCqlSsZNnwETZo0pUmTpoDBAf/++wlmOeBarY6Zy9Yyb8wg3FQufDV0Ag3qehu1SaVypVk5fQy2NjZs2bmPRWs38f3AXiQ8fsLKTdtYOX0MKBR8OXg8QXVr42hf1GQNhaFfAAT4uFCquB0de5ygmuTAoJ4V+XrQWSMbpQX0616BTr1P8ighjZ5dvGj/dglWbrgDgJvahrq1nYmIMm8TmvtrtnB70c94r8y5j7m2bkjRCmU5UKUlTv61qL5wHEcCP8LKuRiVRvUhJKA9er2eBse3EPnnPtLiE0zWoNXpmLFyIwtG9sVN5UyXEVNp4FPTaPyuVLYUayYPx9bGms27DrJw3VYm9e+WUb5k05/UrlzB9BOQRcO0NZv5Ydg3uLs48cWYOTT0qY5XicwgSeWyJejw/QDDPWTPYeZv+JMp33bGt2pF1k82/Dh+9OQp7w+cTECN7EGPXOnQ6pi9dDVzxg3HVeVC9yGjCfSrQ7lSmeOFu6uaEd/2YOMffxsdW6dGNVbNmQJAwuMndOw1AD9v051OrVbHrGVrmTtmsOEaGWq41oyvERdG9unGhm0vXCOnzyHfvMPqWRNITU2jz5ip1Ktd07yxs5C0yZtCrI6SHTExMx+RZflUXjjgAJev36aUh5qS7mqsLC1pUa8OB09dMLLxrVYJWxvDzoY1KpQlShOfF1VnEHbtKh7FS+DhWRwrKysaNGzCiaNHjGyOHztC0+aGCH1gUCMunD+DPv0Z1LEjIbh7eBo57eZy8vghGjZtjUKhoFLl6jx9+oQ4TYyRTZwmhqSkp1SqXB2FQkHDpq05eewQACVLlaV4ydJm1x96/QYlPd0o4eGGlZUlzYMCCDlxxsjG082VCmVLY2FhPPDcvv8A76oSlkolRWxtKF+2FMfOGrflf0UDQGjYdUp4eFDcwx0rK0uaNqhPyAnj3UY93d0oX7ZMNh15ybVrMsWLe+Lp6YmVlRUNGzbi2NGjRjbHjx2lWXNDpCkoqAHnz5/L6J/POXjwAA0bNTJLw5XrNynpkbVN/Dh00tjp9KlRBVsbw46w1SqVJyrWsKPesXOXqFurKo4O9jjaF6VuraocO3vRZA2FpV8ANAhQsXNfBACX5cfYF7VE5fzC7qsKBSjA1sawA2hROyUxmmcZxd92K8/iVTfNfpStCTlFqubRS8vd2zXjQXpEMf74eayKOWLj4YpryyCi9x4mNe4RafEJRO89jFurBmZpuHL9NiU9XCnh7moYv+v7EnzqvJGNbzUpY/yuXtGLKE3mTouhN++geZSAf82qZtUPcPnGXUq5qynpZriHtAyozcHTl4w1VK2YqaFCGSJzuIfsPXGe+rUqZ9iZSmjYDUp4ulM8vX82Cwog5MRpI5vn/VOhePl4ceDoCQLq1Mq4lkzScP0mJT3cM66RZkH+2a5Tg4ZS2TTcuheOd9VKGddIhTIlzbpOofC0yZtCp8/bf/8LCCf8JUiSpJckaaQkSSclSbopSVIzSZKmSJJ0VpKkS5IkZd1a0lKSpCWSJF2QJOn88zJJkhpLkpQne59Hxz3CXeWc8dpd5Ux03MtvLH8cOEr9WpkD9rPUNL4YMY2uo2dy4OT5lx73KmJjY1CrXTNeq9SuxMYaO76a2BjUroYti5VKJUXtivI4IYGkpCS2/LaRjp9+YVbdLxIXG4NKnbk1skrlhiYHLS6qTL0uKjfiXrAxl+jYONxUmY+KXVUuRGtytz1xhbKlOX72IskpKcQnPObMpVCiYjT/SQ0AMbEa3NTGOmJic/9Zz56l8vWAEfQcPIpDx06apQEgNjbWqH+q1WpiY2Oz2bi6GmyUSiV2dkVJSDCObAYHB9OoUWOzNERr4nBXu2S8dnVxITr25W3y195gAuoYInkxmjjcshzrpnIhJpftaaShkPQLALXKhqiYlIzXUbEpqFXGjoJWq2fWojB+WujL72sCKFvKjr92PwQgyF9FTGwK128/NVvD67At7k7S/YiM18kPIrAt4Y5tcXeS72V5/34ktsXdzaojShNvNH67uTgT/Yogybb9h6nnXQ0AnU7H/LWb6dupvVl1Z2iIi8fdxSmLhmJEveoecvA49Wtl30F517GztKpXx2wd0ZqcxgvT+/neQ0dpFlTPTA0vXGsuzq+8TrOS/Rq5StQL40xuKSxtIig4RDrKq4mXZbmuJEkfAn8AHWVZHi5J0hBgJNAp3a4a0FWW5R6SJI0ERgF5EgE3h+2HThB68y5LxvTLeG/bggm4uThxPzKGXhPnU6F0cUq6u77iU/KWjevW0O69DhQpYt5j7f8l/LxrEHr9Ft8M/x4nRweqV6qAMh8jxIVVw3N+Wb4QV5UL4RGRfDf6e7zKlKKEp8frD8wHrl69io2NDWXLls33unYePMLVG7f54fth+V5XbimIfqFUKnivTXG69jtNeEQy3/WowOcdSrPxj/t88WFpvhtjfiT+v8iOQ8cJvXmHH8cOAGDzrmDq165u5MTnN9tDThF68x5LR/Uxej8m7hHX7z2kXg3T59DkJTGaOG7cvYd/7ZpvvG5/7+pcvX6THiMm4uToSDWpPBYW+R/PLOxtkhvExMzsCCf81fyS/v8ZQC/L8vOE1tPAB1nsZFmWnz/LOgbkPPvnX+DqXIzILL/UI2PjcHUuls3u+MWrrPr9H5aM6Y+1lVXG+27pv7ZLuqupU7Ui8u37JjvhKpWamJjojNexMdGoVGojGxeVmpjoKNRqV7RaLU8Tn+Lg6Mg1OZQjIcGsWbmUp0+foFBYYG1tzdtt38t1/f/8tZm9/xgmrZWvWIXYmKhMLbFRuOSgRRObqVcTG4XzCzbm4qpyNop+RMdqcHXJ/U2yc4d2dO5gmIw0bs4iShX3fM0RhVMDgFrlQlSMsQ61yuUVRxjjmm5b3MMd7+pVCbt52ywnXKVSGfXPmJgYVFkiws9toqOjM/pnYuJTHB0dM8qDgw/SqHFjk+t+jquLM5FZIsfRGg2uOThPJ89fZs3mv/jh+2EZ16naxZmzl69m2ETFaqhdzfQba0H3iw/aFKdtK8MxoWGPcVNnpgu4qWyIiX1mZF/Ryx6A8AhDzve+kGg6dShFieNF8HS3ZfV8w3QbV7UNK+f60H3AGTTxqSZpehXJ4ZEUKenB89HVtoQHyQ8iSQ6PxKVR5vwV25LuaA6eMKsONxcno/E7ShOHa5YI6HNOXAxl9dadLB77XUa/uBh2k3NXr7N510ESU1JITdNiZ2tD70/fN02Ds5NRKkOU5hFuOd1DLsms3LabpSP7YG1l7CLsPn6OJr41sLRUmlR3VlxdchovTPuBsf/wcRr6+2JpaZ4L4+ribPSEJ0oTl+N1+jKMr5EfKWVm0KCwtMmbQi+WKMyGSEd5Nc9nAmmBlCzvazH+AZP8irI8oWr5MtyNiOZBVAypaWnsPnqGhj7GUQD51j2mLN/IrEE9cCnmkPF+wpNEnqUablrxCU+4cO0m5UqYPmhUrFSZh+EPiIx4SGpqKoeC9+MXUN/Ixs+/Hvv27ALgcMhBatasjUKhYMqMeSxbvZ5lq9fT9t32dPj4U5MccIBW77Rn+oLVTF+wmrr1GhC8byd6vZ5rVy9hZ2ePs4uxg+3soqZIkaJcu3oJvV5P8L6d1PU3L6fzRSpX8OLew0jCI6NJTU1jT8gxAuvWztWxWq2OR48fA3D99l1u3L5HXe/q/0kNAJUrluf+wwgeRkaRmprGvkNHCPTzydWxj588ydI3E7gYeo2yWSZomUKlShIPwsOJiIggNTWV4OCD+AcYr+zh7x/A3j17AAgJOUTNmrUycj51Oh0hh4Jp2NC8fHCAKhXKcf9hVJY2OUGQr3GbyDfvMG3JGqYP64tLscwfAAHe1Tlx/jIJT56S8OQpJ85fJuA/2C+2bA+na7/TdO13mkPHYmjd1DDWVJMceJKYRmycsRMeHZtC2VJ2ODkanM663s7cuZfIzTtPafv5UT7sdpwPux0nOiaFL/ufzlMHHCDqz32U6GQYi5z8a5GW8JiUiGiid4Xg2jwISydHLJ0ccW0eRPSuELPqqFK+DPciogh/Pn4fOZXj+D112XpmDO5p1C8mfPsl236YzO8LJ9H3s/a0aeBvsgMOUNWrFPcionkQFUtqWhq7jp2lYZ1qRjZXb99n8spfmT2gm9E95Dn/HP33aQ+VK3px/2EE4enjxd6QYwTVzd148Zw9IUdo3sC8VBSAyhXKcT/LNbI35Hi26/RlGK4Rwwo/12/f4/qde/iZOXYWljYRFBwiEv4fwVKpZEiXj+g75Qe0Oj3tGgdQvpQnP/76F1XKlaaRb03mrf+dpOQUhs1bAWQuRXgrPIIpyzdgobBAp9fRuV0pJSAsAAAgAElEQVQLo1n5uUWpVPJ1z28ZN2ooOp2OZi3fonSZsqxbu4oKFSX8A+rTolUb5sycQo+vPsfBwYFBQ0fl9akAoLZvPc6eOkq/7h9jnb5E4XOGfNuF6QtWA/BVr4EsmjOJ1GcpePsE4O1rcMpOHDnIqiVzSXgUz7TxgylTriIjv5+d6/otlUoGdPuCAROmo9PpebtZQ7xKl2T5hs1ULl+OIL86hIbdZMS0eTx++pTDJ8+y4pet/DxvCmnaNHqPnASAXZEijOn/DZZK06MYhUHDcx39v+7KoHGT0el0tGnWhHKlS7Fi3SYqV/Ai0N+X0LAbjJ4yi8dPnnLk5BlWbfiNNQtncufeA2YuXo6FQoFOr+ez9u2MVlUxBaVSSc+evRg9aqRhCc2WLSlTpixr1/5ExYoVCQioR8tWrZk5czrdvuqKg4MDQ4Zmrhh06dJF1GpXPD3NeyLw/FwM6PYZ330/C61OxztNG+BVugTLNmylcoWyNKhbmx9+2kRScgqjZi0CwF2tYvrwfjg62NO1Q1u+GjoBgK4ftsPRwd5MDQXfLwCOntJQz9eFX5b6ZSxR+JxV83zo2u80sZpnrNpwh4VTa5GWpicyOoVJc6++4lNNw3vtLFSN/LBWO9P01kHCJixAkR5NvLt0I1E7DuL6ViMaX92NNimJC90MY0lq3CPCJi8i6Khh6cqwST+Q+op83VdhqVQyqGtH+k5eYFgSr0l9vEoVZ8mmP6niVZqGvrVYsG4ziSkpjJhrWOXJQ+3MzMG98uAMZGoY3Lk9305fglano10jf8qX9OTH33ZQpVwpGvlUZ/6GbYZ7yPzVgGHu0ZyBhhVawqM1RGriqVPZ9FWDXtTxXfcuDBw/zbCkabNGlCtdkuXrf6NyhXIE+fkQGnaDkdPm8PhJIkdOnmXlxs2snW9YyephVDRRMRq8q2XPjTZJQ7dODPh+5gvX6RYqVyhHg7q1Cb1+k+HTFhiukVPnWL5xK+vmTSZNm0avUZMBsCtiy5h+X/+rsbMwtMmb4n9lMmVeonhxZQCBAUmS9ICDLMtPJEkqC5ySZVmdXtaY9GUJX1yi8FVlryPhzO4Cb4zwYuYPbHlJss70Ge95TYlnNwtaQqFBqywcs+6fWGV/hP+mcU56WNASANApCv7x8/vDzFs2MK8ZvvPrgpZA4InFBS0BAGVawbdJUlG31xu9ASx0efvUxBxskkyfdJofONRtU+C5IL8ey1s3/MOAAprIlIeISPhLkGVZkeXv24A6y+sDgO+Lf7+uTCAQCAQCgUAgAOGECwQCgUAgEAjymcKaeCFJkh2wCvAB0oBBWRbiyGr3LjAGsAEUwEpZlmell3UB5gK3081vybL82skbwgkXCAQCgUAgEOQrusK7Y+YgIEGW5QqSJFUEDkmSVEGW5Scv2EUAbWVZDpckqRhwWpKkE7IsH0ov3yPLcgdTKharowgEAoFAIBAI/r/yMbAEQJblMOAU8NaLRrIsH5dlOTz970dAKFDm31QsIuECgUAgEAgEgnwlr9NRJElyAnKarR8vy/LLt6TNTmngTpbXd4FSr6m7MhAA9MjydiNJks4BCcA0WZb/fl3FwgkXCAQCgUAgEOQr+ZAT3h8Ym8P744Fxz19IknQGg6OdE+6mVipJkieGXdR7PY+MA38Bv8iynCRJUm1ghyRJTWRZDn3VZwknXCAQCAQCgUDwX2MusDqH942i4LIsv3I3I0mS7mJIK3m+5XJpYP9LbN2APcB0WZZ/zVJHTJa/z0qSdBjww5Cy8lKEE16IKAzr/rqkRBS0BAAe2bgWtAQsC8F6uwApNo6vN8pnLHTagpYAQEyqS0FLIEqpfr3RG+BxUMDrjfKZYbvPF7QEAAInFPwa3Yf9eha0BACURQp+qpeNe+HYV0CfWvDLcairFvyYBVBze5uClpDnm/Wkp5yYknbyMn7FkFZyKn1iZl3gkxeNJElSAbuBhbIsr3ihrIQsyw/S/y6DIVVl4usqFk64QCAQCAQCgSBf0Rfe1VFmAKslSboOaIGvZVl+DCBJ0gQgXJblH4FhQCWghyRJz3PB58myvAronb6EYVr6+yNkWT77uoqFEy4QCAQCgUAg+H+JLMtPgQ9fUjYmy9+DgcEvsRsBjDC1buGECwQCgUAgEAjylcK6WU9BIpxwgUAgEAgEAkG+ktc54f8LFPwMDoFAIBAIBAKB4P8ZIhIuEAgEAoFAIMhXRDpKdoQTLhAIBAKBQCDIV4QTnh3hhP+HOHruMrPXbEKn09OuaSCd321lVL7+7z38se8wlkolTg72jPrmczxdVRnlTxKT6DhoAo18azH4y45maTh+5jzzVqxFp9PxTvPGdGrfzqj83OVQ5q/8mZu37zJ2YB+a1PcH4MzFyyxY+XOG3d0HDxk7sA8N/X3N0nH61EmWLlmMTqejZavWfPiR8fdJTX3G7JkzuH49DAcHB4YOH4m7uwcAt27dZOGCeSQlJqJQKJgzbyHW1qava3v03CXmrPoFnU5Hu2ZBfPHeW0bl6//azba9ISiVFjg7OjCyZ2c8XVVcu32P6cvW8TQpCQsLC7p80IYW9euadR6OnznHgmVr0Ol0vN2iKZ91eNeo/PzlUBYsX8PN23cZM6gvjQMz15aOjI5h+sIlRMXEokDBtDFD8XR3M1NH4egXer2edctmcf70EaxtbOnebwxly1fOZnfreijL50/gWUoKtXzq81n3gSgUhuWzdv/1C3u3/4bCwgJv30A+7tLXZA3rl8/kwunDWNvY8lXfcTlquH09lOXzx5H6LIWaPoF82m0QCoWCuzdl1vw4hdRnz1AqlXzeYyhelaqbpEHdNIjKU4ahsFBy/+fN3Jq33KjctqQn1RdMxFrlTGrcIy70HEZKeCQuQX5IE4dm2BWtWI4L3QcRtX2fSfVnPRe/r5lC6LlgrK2L0LHnJEqWq5rNbvsv8zgVvI2kp4+YsvpUxvtxMeFsWDyCpKeP0et0vP3Jd1Sp3dAkDYVh3Ky5bDJubRrzLCqW4Nptc7SpOmckbq0boU1K5vxXw0g4ewWAEp+/R8XhhjXIw6Ys5sHa383SAKBuHkSVaSNAacH9Nb9xa84L/aJUcWr8MBFrtQupcY84330IKeGRAFSaMAjXVo1QWCiI3X+E0CGTzdbh0qA+FUcNBaUFDzdt5e7SlUblNsU9qTJlPFYuzqQ+ekTooBGkRERllCvti+K3Yysxu/cTNmGKeRoaBVJxzFAUSgse/rKFO4uNNdiW8KTy9AlYp2u40n8EKRGGc9HkxlmeyGEAJD+I4GJ308aIrNj7+FGiRx+wUKL552+if11vVG7l6kapAcNR2tuDhQURq5by+NRxo/JKP64hct1qYrb8YrYOQcEgnPB/iSRJesBBluUn+VmPVqdjxsqNLBjZFzeVM11GTKWBT028Snpm2FQqW4o1k4dja2PN5l0HWbhuK5P6d8soX7LpT2pXrmC+Bq2O2UtXM2fccFxVLnQfMppAvzqUK1Uyw8bdVc2Ib3uw8Y+/jY6tU6Maq+YYBsuEx0/o2GsAft41zNShZfGihUycNBWVWs13/b/FP6AepUuXybDZ9c9Oitrbs2zFag4e3M/qlSsYOnwkWq2WWTOmMWDQELy8ypOQkIBSafomSVqdjpkr1jN/1He4qZzpOnwyDXxrUa5k8QwbqWwpVk8dga2NDZt3HWDhz5uZ9N3X2FpbM6ZPV0p7uhOtiafLsIkE1KqGQ1E7E8+DjrlLVjJr/EhcVSp6DBpBoJ8PZUtntoebWsXwfj3ZuPWvbMdPnvsDnT58n7reNUlMSsbCwrw1XAtLvwC4cPoIEQ/vMf3Hzdy4dok1i6cxduaqbHZrfpxG194jKF+pOrMm9OfCmaPU8qlP6IVTnDkezPfz1mFlZU1CvMYMDYeJfHiPqYu3cvPaJdb+OIXRM9Zks/tpyRS69h6FV6XqzPm+HxfPHKGmTyCb1szn3Y+7U9MnkPOnQti0Zj7DJi3NvQALC6pMH8mp9t1JDo+k3p5fiNq5n6fyjQwTacJgwn/ZRvjGP3Bp4E+l0f252HM4mpATHG3cHgArp2I0OLWDmP1HTD4Hz7l67hAxEXcYPmcHd69fYPOKCfSbuDGbXbU6jQlq+SlTvjP+Ibtn6xK8A1pTv0VHIu5fZ/m0noxasDvX9ReGcRPg/pot3F70M94rp+VY7tq6IUUrlOVAlZY4+dei+sJxHAn8CCvnYlQa1YeQgPbo9XoaHN9C5J/7SItPMF2EhQVVZ43m5LtfkfwgknoHNhG13bhfVJ44mAcb/yB8/R+4NPSn0rgBXPx6KE5+3jgH1OZwPcOP/IBd63AJqosm5KRZOiqNG8G5Lj1IiYjEd/N6YvYdIPH6zQyTCsMGEPH7n0Rs/ROnAD+8BvYjdPDIjPJy/Xvz6ORp0+vOokGaMIKznb42aNi2gejdL2gYMZCILX8SsXkbzvX8KD+kL1cGGDRok1M42eYj8+vPoqNEr37cGjmI1JhoKsz9kYRjh0m5dyfDxK3j58Qf2o9m+zZsSpWh3IRpXO2a+WPQs3tvI6e8MCMmZmZHTMz8j3Dl+m1KerhSwt0VK0tLWtT3JfiU8W51vtUkbG0MEd3qFb2I0sRllIXevIPmUQL+NbNHoXJLaNgNSni6U9zDDSsrS5oFBRBywngg9HRzpULZ0hlRxZw4cPQEAXVqYWtjY5aOa9dkPIsXx8PTEysrKxo2bMSxo8aOwrFjR2nWvAUAQUENOX/+LHq9njNnTlO2XDm8vMoD4OjoaJYTfuX6LUp6uGVpj7oEnzRuD5/qlTO+Y9b2KF3cndKe7gC4ujjhXMyRuITHJmsIDbtOCQ8Pinu4Y2VlSdMG9Qk5ccrIxtPdjfJly2RzsG/fvY9Wq6Oud00A7IrYmt0ehaVfAJw5EUxgkzYoFAoqSDVIfPqYeE2MkU28JobkxKdUkGqgUCgIbNKGM8cPArB352bead8ZKyvDdeToZPpud2dPHKR+Y4OG8q/QkJT4lPLpGuo3bsOZ4wcMhQoFSUlPAUhKfIKTi2m7xxarU4PEW/dIunMffWoqD7dux+2tJkY29lJ5NMGGG7fm0HHc3mqa7XPc27Ukes8hdEnm7xx76fQ+fBq0Q6FQUKZiLZISH5MQF53NrkzFWjg65/A9FQqSkwzxjeTEJzg6m/akpjCMmwCakFOkah69tNy9XTMe/GyIcMcfP49VMUdsPFxxbRlE9N7DpMY9Ii0+gei9h3Fr1cAsDU6+NUm8eZek24Z+EbF5O+5vG7d70coV0BxM7xfBx3Fvk1luYWODhbUVFjbWKCwtSYmKNUuHY83qJN25R/K9B+hT04j8eyfqZo2NdVQoT9zREwDEHzuBunlmuX21KlirVGhCjppVP4Cjd3US79zN0BD1505cWxpfI3YVvYg7YjgXcUdPoG7RJKeP+lfYVarMs/AHPIt4iD4tjfjgfTjWCzQ20utR2hUFQFm0KKmxmWOJY70gUiMeknL3dp5ryw/0+rz997+AcMJfgiRJ7SVJuipJ0llJkkZIkqSXJMlekqQP0t8/J0nS6BeO0UuSND69TJYkqX1e6YnSxOOucs547ebiTLTm5bu1btt/mHre1QDQ6XTMX7uZvp3+nZxojQY3deZjWleVCzGxca84Imf2HjpKs6B6ZuuIjY3BVZ15w1arXYmNjc1u42qwUSqV2NkVJSEhgfAH91GgYPSo4fT7the//brJLA3RmnjcVJkOmpvKiWjNy8/Fn/tCqOedPaXg8vVbpKalUdLdNEcLICY2p/bIXeT2XvhD7IvaMWrKLL7qP4zFq35Gq9WZrAEKT78AiIuNQqV2z3jtonYjLjYqm42zKtOZc1Fl2kSG30W+co7xg7oyeUQPboZdMVlDvCYaF7VHxmtnlTtxmhc0aKJwUWXRqXInXmNwTj/9aiCbVs9jwFdv88vqeXT4vI9J9dt6upP84GHG6+TwSGw93Y1sHl+ScXunOQBu7zTH0sEeK+diRjYeH7xFxJbtJtX9Io80UTipMs9FMRd3Hmkic318q/a9OR3yFxN6N2X59J6838W0vTAKw7iZG2yLu5N0PyLjdfKDCGxLuGNb3J3ke1nevx+JbXH3nD7itdh4uhnXER6JTfEX+8VV3NsZghfubVtg6WiPlYsT8SfOoTl0nCbXgmlyLZiYvSE8vXYTc7DxcCP5YaaOlIgobNyNdTy5KuPaqhkA6pbNsLS3x9KpGCgUVBg+kBvTZplVd4YGd/eMNBuAlIeR2LyQivck9BqurQ3XiGurZlg6pGsALGys8d22AZ+tP6Nuab5zbqVyJTUm80dpakw0Virje0HkutU4NW1B5Z9+pez4aYT/ON+gwbYIrh0+IXJ99qdsgv8OwgnPAUmS3IGlQFtZlmsDSelFKmAZ8K4sy95ASg6Ha9PL2gFLJUkyL8n2X7Dj0HFCb96hU1vDYLp5VzD1a1c3uhkVFDGaOG7cvYd/7ZoFUr9Wq+XKlUsMGjyMaTNmc/ToYc6de+3Osv+KHcHHDO3RrqXR+zFx8YxfsJLRPbtgYfFmL0WtVsuFK1fp1bUTS2ZNIjwyip37DrxRDVkp6H7xHK1Wy9MnjxgzYyUfd+nLD9OHo3/DIZf9O3/jky8HMHvF33zy5QBWLfw+z+uQx87AJdCXevt/w6W+L8nhEeiz/AizdlfjUKUiMfsO53ndpnD2yN/UbfgeY37YR7chi9mwaBg6nXk/Fl9HYR433xTyyOk4B9al/qHNOAf5kvwgAr1Wi51XaYpK5TlQpQkHKjdG1SgA53o++abj+tTZOPn54vvHLzj5+ZAcEQlaHSU++xjNwRCj/PB80zBpFk7+PtT9+xecAnxJfhgJ6X3vSGBrTrX7hMt9h1JxzBCKZEkBzGucGjcjbvdOrn7xIbfHDqXUoBGgUOD+WRdifv8VXXLS6z+kkKDT5e2//wVETnjO+ANnZDl95gWsBGYDtdLfl9PfXwq8mOS3AkCWZVmSpDNAALDt3wpyc3EiMkt0MUoTh6uLUza7ExdDWb11J4vHfoe1lRUAF8Nucu7qdTbvOkhiSgqpaVrsbG3o/en7JmlwdXEhKiYz4hwdq0Ft4g1q/+HjNPT3xdLS/K6nUqmJzhI9iImJRqVSZbeJjkatdkWr1ZKY+BRHR0dUajXVqtegWDFDRMPXty43rofh7V3bJA2uLk5EZYk6R8XG4+qS/VycuHCF1Vu3s3jcoIz2AHiamMSAqQv45pP3qF7Jy6S6n6NW5dQeuUufcFWrqFCuLMU9DBGoIH9frsjXebuF6ToKul/s+ftXDu42PMovV6EqsTGZES5NjHHUG8BZZRwd12SJjLuo3PANaGJIJalUDYWFBY8T4nEs9urvs3f7Jg7uStdQsSqamMxIX1xsJM4uL2hwcUMTm0VnbGRG2snh/X/xabdBANQNbM6qHybm7kSkk/wwEtsSmTnPtsXdDQ5EFlIiojnXuT8AyqJ2uLdtQVqWlCiPd1sT+fde9GlpJtUNELJrPcf3/QZAKa/qxMdmnotHmkiKueQ+knt8/xa6D18CQNlK3qSmPuPp4zgciqlec6SBwjBu5obk8EiKlPTguVLbEh4kP4gkOTwSl0Z+GXa2Jd3RHDxhVh0pD6MoUjLzqYRtceNoMKT3i06GSYbKonZ4tGtJ2qPHlOz8IY9Onkf7NBGA6N2HcPLzJu6o6XnZKRFR2Hpm6rDxcCMl0ljHs6hoLvUeYNBhVwTXVs1Je/wYx9o1cfKtQ/FPP0JpZ4eFtRXaxERuzpxnmoZI46cANp7upEQaO/bPoqK59E0WDa2bZ1wjz9Jtk+89IP7YKeyrVSHp7n2TNACkxkZjleWprpXaldRY43Qtl5ZtuDV6CACJV6+gsLJG6VgMO6kKxYIa4fnlNyiL2qPX69A/e0bsX1tN1vGm+F9JIclLRCT8P0KV8mW4FxFFeFQMqWlp7D5yioY+xlFD+dY9pi5bz4zBPXEp5pjx/oRvv2TbD5P5feEk+n7WnjYN/M26kVSu6MX9hxGER0aRmprG3pBjBNU1LRqyJ+QIzRv8u5SDSpUkwsMfEBHxkNTUVIKDD+IfYPyZ/v712LvHMIErJCSYmjW9USgU+NTx5c7t2yQnJ6PVarl06aLRhM7cUqV8We49zNoeJ2ngW8vIRr51l2nLfmbGkN5G7ZGalsbQmYtp07AeTQPMjyZVrlie+w8jeJjeHvsOHSHQL3efV7lCeZ48fUr8I8MErzMXLlO2VAkzdRRsv2j+9od8P3cd389dR52ARhzevx29Xs91+SJFitrj5KI2sndyUWNrV5Tr8kX0ej2H92+njp9hxY06/o0IvWhwLCIe3EGbmoqDY3an7UWatfmICXPXM2Hueur4N+bIAYOGG6/QUMSuKDfSNRw5sJ3afo3Sy1yRLxk0hF44ibtnKZPOR8LZS9h5laZI6RIorKzwfL8NUTv2G9lYuThBen5+uf7deLDO+Mbt2b6N2akoQS0/ZeDULQycuoXqvs04fWgber2eO2HnsbWzzzn3+yU4qz0Ju3QMgMgHN0h7loK9Y+7z9AvDuJkbov7cR4lO7wHg5F+LtITHpEREE70rBNfmQVg6OWLp5Ihr8yCid4WYVcej0xex8ypDkTKGfuHRvg1R21/eL7wGdOf+z1sASL7/EOfAuiiUShSWlrgE+vIky4ROU3h88TJFypbGtmQJFFaWuL/dmpi9B411OGfqKN3jKyJ+M/zADR04gqONWnOsSRtuTJtNxNa/THbAAR6fv4xd2TIZGtzatiZm94GXaijTqxsPNxmuEUtHBxTWVhk2xXy8eRpm3rlIvCZjXbwkVu4eKCwtcWrYlIRjxvObnkVHYe9tGE9tSpXGwtoa7aN4bgzpy9WuHbnatSMxf/xG1C/rCrUDLsgZEQnPmePAKkmSysuyfAPonP7+OaC2JEkV06Pk3XI4tiswUZKkikBt4FheCLJUKhnUtSN9Jy9Ap9PRtkl9vEoVZ8mmP6niVZqGvrVYsG4ziSkpjJi7DAAPtTMzB/fKi+ozNHzXvQsDx08zLInXrBHlSpdk+frfqFyhHEF+PoSG3WDktDk8fpLIkZNnWblxM2vnTwfgYVQ0UTEavKtV+Vc6lEol3/Tsw5hRI9DpdLRo2YoyZcry89o1VKxYCf+AerRs1ZpZM6fR/asu2Ds4MHSoIZfU3sGB997/gAH9vwUF+Pr6UdfP36xzMejLT+g3aa5hWb4mgXiVKs7SX/6gcvkyNPT1ZsHPv5GYnMLI2YZInrvahZlD+7DnyCnOhl7j0eMn/H3AMOCO7t2VSmVNc7YslUr6f92VQeMmo9PpaNOsCeVKl2LFuk1UruBFoL8voWE3GD1lFo+fPOXIyTOs2vAbaxbORKm0oGfXTnw3eiJ69Ejly/FOy2Ymn4fnOgpDvwCo5RPIhVNHGPzNB9jY2NLt28xpG6P7f8b3c9cB0LnHEJbNn8CzZynUrFOfmj71AWjYvB3LF3zPiG87YmlpRff+Y185mTQnavoEcuH0YYZ+8176EoVjM8rG9P+UCXMNS5B93mMYK+aP41lKCjV86lPTxzAhq0uvUaxfPhOdTouVlTVdeo3MsZ6XoddqCR06CZ9fl6JQWvBg/VaeyjeoMKwPj85dJnrnflwC/ag4uj/o9cQdPcWVIZnRdttSxbEt4YHmsBkrX7xAldoNCT0XzJT+b2FlY0vHHpn1zBr2AQOnGpy8P9fN5OyR7aQ+S2ZC76b4N2lPqw69adtpML8uG0vw9p9QKBR07DnJpPYoDOMmgPfaWaga+WGtdqbprYOETViAwspw+727dCNROw7i+lYjGl/djTYpiQvdDONVatwjwiYvIuio4clC2KQfSI17+QTPV6HXarkyeCK+W5ejUFpwf+0Wnly9ToWR3/LozCWid+zHpYEflcYNAL0ezeFTXBk4AYCI3/9B1dCfwGN/gF5PzJ4QonceMFvHtfFTqLVysWF5wN9+J/H6Dcr160XCxcvE7juIk78vXgP7gh7iT57m2njzl0N8qYYxk/H+aTEKpZLwTb/zNOwG5b7rxeOLV4jZcwCngLqUH9IX9HriT5xBHjMJALsKXlSePAa9XodCYcGdxSuNVlUxCZ2W8MXz8Jo4AywsiNu1g5S7t3Hv1JWkMJmE40d4uGwRJfsNQv1eB9DDvdlT8/BMvFlEJDw7ijed7/hfQZKkD4GJQCLwFzAUsAXeAyZjyBPfDHxP+hKF6csVjgfeBeyAEbIsb85tnfFn9xV4YzyzcXy90RvgkY3pExXzGvWT2wUtAYCUQtAmFjptQUsA4KZFxYKWgE5fOB4gPg4KeL1RPpO6+/zrjd4AQYrggpbAYb+eBS0BAGWRgu+fNu6m77uQH+hTC/yWirqq6Sss5Qc1tx8wbw3aPOSHHeRpg/R+iwL/Tv8WEQl/OTtlWf4VQJKkrsAJWZZ1wJb0f895MWFzpizL496MRIFAIBAIBALBfxHhhL+cvunRcEtAA3QvYD0CgUAgEAgE/0nyPvPiPx8IF074y5BleRIwycRj/vs9QiAQCAQCgSCPEdnP2Sn45DGBQCAQCAQCgeD/GSISLhAIBAKBQCDIV/5XNtjJS4QTLhAIBAKBQCDIV0Q6SnZEOopAIBAIBAKBQPCGEZFwgRGW2uSCllBosNCmFrQEAPSFYAa4Ql841gkvDKTpCkfsQptU8G3yOElZ0BIAUFoX/LhVGNbnBtAmFfwzfwvLgh+zAAr+TEBaSlpBSyg06EQkPBvCCRcIBAKBQCAQ5CsiHSU7heOnu0AgEAgEAoFA8P8IEQkXCAQCgUAgEOQr+jzPRykcaU//BuGECwQCgUAgEAjyFZETnh2RjiIQCAQCgUAgELxhRCRcIBAIBAKBQJCviImZ2RFO+H+Io+cuM3vNJnQ6Pe2aBtL53VZG5ev/3sMf+w5jqVTi5GDPqG8+x9NVxcPoWIbOWoJOrydNq+WjVo35oEVD8zScvcb6V0cAACAASURBVMjcVRvQ6vS0a9aAL95vY1S+4c9/2Lb3EEoLJU6O9ozs3RVPVzUA/SfO4fK1G9SsXJFZI/qZdxLSOX3qJEuXLEan09GyVWs+/KijUXlq6jNmz5zB9ethODg4MHT4SNzdPQC4desmCxfMIykxEYVCwZx5C7G2tjZZw9Fzl5n102/odDrebRJI53dbGpWv+3sv2/YfQWlhgZOjPaN7dMLTVZVR/iQxiY6DJ9LItyaDu35sxlmA42fOsXDZarQ6HW+3aMpnHd4zKj9/+QoLl6/hxu27jBnUj8aBARllTd/vSLkypQFwV6uZPGqIWRoAjp25wLyVP6PT6XineSM+/6CtUfm5y1eZv3IdN+7c+z/2zjssiuv7w+/u0kSkLEu30HTsoqKgYkdjTGJML+YbTUyMpqix99iNRuy9oMYaY4sajbEjCipWVBgBu0hvItJ29/fHEmAFo7vRoPnN+zw8DzP3zNzP3rsze+bMufcyftDXtG/ZvLhs0c+bOHHmAlqNhmaN6jOg9yfIZMbl+mm1WtYvD+LCmROYmVvw5YBxuHvVLmN3PTaKFfMmkp+XR6OmLenx5eDiOvfv/oWDe7Ygk8vx8W3FB736G6xh08qfiDwbipm5BZ99O4EaXnXK2G1fv4CwI7+T8yCLBRuOF+8vKMgneO5Ybl6LwqqKLX0G/4jK0dUgDapOAdT9aTQyhZzbq7dwLWi5XrlFNVcaLpmCmUpJQXomF3oPJfduIgDCpME4dmkLQOyPi7m3da9BdZdGq9Wyd8MUYiJDMDWzoHvvabjWqKdnk5/3kF8XDyQt6RZyuYJajdrT6b3BAJwL3cb+zT9Rxc4JgOYde9C0zXsGaThxIYqZa7ej0Wjp3s6PXt0C9crX7TnCb0fCUSjk2FWxYlyfD3FRKYm4EsOsdTuK7W7cS2LqN5/SzreBMU2BKjCAOtNHgULOnTVbuD57hV65RTVXGiycXNInXw4jL17XJ7UmDsHhlbbI5DJSD58gathUozQ0XD4Vx67tyE9KJaTxG+Xa1J09GscubVE/zOVC7xFknbsCgNv/ulNzZD8AYqYt5u7aHeUe/zTYBbTEe9QwZHI597Zs5/aKVXrl5q4uCJPHY6q0ozAzi6hho8hPTCouV1SuTLPd20g5eJjYyT8apUHZuiU1xwwHhZx7m7dza1lwGQ11pk3AVGlHQWYmUUNGkZeg09Au+izZV2MAyItPILKv8b9n1s38qPrNAJDLSd2zm8RN6/TKTR2dcB8+GkVlK2QKOXeXLyHrVDh2HTvh9P7HxXaVPL2I7vs5D+NijdbyvNFI+Shl+H/lhAuC0At4XRTFd59g1w4wE0Xxz6JtV2C9KIrtn7vIx6DWaPgpeBPzR/fH0d6OXqN+pHXThnhWdSm2qeVejTVTR2JhbsbWP4+yYP12pgz8ApWdDSsmDcXM1JSc3Fw+HjKJ1k0b4qC0NUyDWkPQivXMHTcYR6Udn4+YRGtfHzyqlTgItTxqsGp6OyzMzdm27zAL125h8qC+APTo9gq5+fns+PPoP2sLtZrFixYwecqP2KtUfD/wO/z8W1C9eo1imz/3/UFlKyuWr1zN0aOHWR28kuEjR6NWqwn6aTqDhgzD09OLrKwsFArD5zpWazTMWLWZBaO+w9Help6jZ9C6aQO9/hDcq7FmynAszM3Ysj+E+Rt2MHVA7+Lypb/uxqe29z9oBw1zlwYzc8JoHOzt6TtkJK2a++JevWqxjaNKxYgBX/PL9l1ljjczM2PlnBlG119ax6zlPzP7h2E42iv5YtgPBDRrgkc1t2IbJwd7Rn33JRt/03foIqNjiIyKYc2sKQB8PXoS5y5H06R+Waf1abh45gQJ924zY8lW4q5eYs3i6fwwc1UZuzVLpvPZN6PwqlWfoIkDuXg2jEZNWxJ1MYKzJ0OYNHc9pqZmZGWkGazh0tnjJN27xZSFv3HtaiTrl01j1PSfy9g19G1D+1c/YMy3+g9OoQd2YGllzdRFOzkVuo+tP8/lqyHTn16AXE692eM49frn5N5NpNWxX0n6/RDZ0XHFJnWmDePuht+4u34H9m39ECYM4sIXw3Ho0hYbn7qE+r+F3NwMv30/k/xnCIX3HxjcDgAxkSGkJd6k/7R93Ll2gd9/nsCXYzeXsWv5ymd41PGnsDCfn3/6jJiLIdRsqAsU1Gv+Kq99Ms6o+tUaDdPXbGXhiL44KW35dNxs2jStj6ebc7FNbXc33p00SHedHjjOvI27mPZdT3zr1mTD1KEAZGY/4K3BU/FvIBilA7mcukFjOf1mb3LvJtLiyGaS9hzmgVjSJ7UnD+Xupt+I3/AbyjZ+1Bo/iMg+w7Ft7oOdf2OOt3gTAP8/16MMaEZa6GmDZdxZs40bi9bhE1z+98mhSxsqe7tzpE5nbP0aUX/BeE60eh9TOxtqjfmWUP930Gq1tD65jcRdhyjMyDKqLWqOHcnF3n3JS0ykyeb1pB4+Sk7ctWITr6GDSPxtN4m/7cLWrxmeg/oTPXxMcbl7/2/IiDhreN2lNNQaP4rzvb4iLyER360bSDl0hJzYEg3eIwaRsGMXCdt3YevfHM/BA4gaOhoAdW4eEd2MC5w8qqNa/0HEDPueguQkhEUryAwLJffmjWITlx49ST9yiJRdO7Co4Y7X1J+43OM90g/uJ/3gfgAsPDzxmjjthXbAQYqEl4eUE14+7YDisKYoivEV6YADXIm9QVVnB9ycHDA1MaFTS19CIi7o2fjWE7Aw10V069f0JCktHQBTExPMTE0BKCgoRGPklXAl9hpVnR11GkxNCGzVnJDT5/RsmtavjYW5OQD1anqSlJpeXNasYV0qW1gYVXdprl4VcXF1xdnFBVNTU9q0aUt42Ak9m/DwMDoGdgIgIKANFy6cQ6vVcvbsGdw9PPD09ALA2traKCf8cnF/qDA1MaFzi6aERFzUs/GtV6u4Pxp4e5CUllFcFnXtFmmZ9/FvWDZK+7REx8Ti5uyEq7MTpqYmdGjdkuOn9H+YXZwc8XKvgUz+/C71qNg4qro44ubsqPteBPgTekr/B9LF0QFv9+rI5foRbpkM8goKKCwspKCwgEK1GqWttdFazp4KoVX7rshkMryFBuQ8uE9GWoqeTUZaCrk5D/AWGiCTyWjVvitnT+oeDA/+sZXX3+mJqamu36xtlQZrOH/qCP7tXkcmk+ElNCzSkFzGzktoiK3Soezxp4/Qsv3rADRt0ZHoyNNoDbhmbX0bkhN3i4c37qAtKODelj04vd5Rz8aqthepR8IBSD16EseicqvaXqQdj0CrVqPOecj9SyKqTq2fuu5HEc8dpFHLN5HJZFTz8iE3J4v7GUl6NmbmlfCoo3tDY2JihkuNumSlJxhdZ2kux92impOKqo5F16l/Y46euaRn41u3Zsl907sGiaWu0784eOoCLRvVLrYzFFvfhuRcK+mThK17cHqtg55N5drepB09CUBayEmcupaUy83NkZuZIjc3Q2ZiQl5SqlE60kIjKEjLfGy5U7eO3C2K/mecvICpjTXmzg44dA4g+eBxCtIzKczIIvngcRxfMe57Yd2wPg9v3Sb3zl20BYUk7dmHfYd2ejaW3p5knDxVpOO0XrlV3TqYqZSkHw8zqv5iDTdvk3tbpyHx9z9QddTXUNnbi/SwIg3hp1AFtit7on9I5dp1yLt7h/x78WgLC0k/fACblgF6Nlq0KCpXBnRvAApSU8qcR9khkPTDB5+5PonnT4VHwgVB0AITgTeBSsAoURS3FpV1AaYBCiAZ+EoUxdiiSPVc4ALQFHgA9BJF8cqj0e7HRb8FQXAGNgLWgAXwuyiKwwRBaAD0BeSCIAQCm4r+IkRRVD2FrjnASaAFoAU+FEUx6p+2U1JaBk72dsXbjko7Lsdef6z9zsPHaeFT8to3MSWNQTMWcTshie96vG1wFBwgOS0DR1WJU+Job8flmMdr2HUolBaN6xtcz5NITU3BQVXivKhUDohidFkbB52NQqHA0rIyWVlZxN+9gwwZY8eMJCszk9Zt2vHue+8brCE5/ZH+sLflcuyNx9rvPHKCFo3qAqDRaJi7bhsTvunJ6UvRjz3miRpS03BQlaS3ONjbc+Xq00dC8vML6DNoJAqFnI/f6U5r/2ZG6kjH0b60DiVXYuL+5ogS6gs1aVK/Dm/27o8WLW+/Goh7VbcnH/gY0lOTsFc5FW8rVY6kpyZhq1Tp2djZO5bY2OtsABLjbyFeOc+WdYsxNTPjw88G4FmzrmEa0pJQltJgZ+9IRlpyuQ53eWSkJmNnr4vUKhQmVLK0Ivt+BlWs7Z5wpA4LVydy794r3n54NwHbZo30bO5Hiji/2Ykbi9bi9GYnTK2tMFXacj9SxHvUN1ybuwqFpQX2bfzIjnq6viyPrPRErJUlb4eslc5kpSdSxdaxXPuHOVmI5w/jF/hp8b6oM/u5eTUCeyd3unw0EptS53sSSekZOJW61zkqbbgUd+ux9r8dPUnLRmXfwvwZfo4er7Z76nofxdzFkYd3Sh4scuMTsfFtqGdz/1I0Tt06cXPxWpze6IRJUZ9knDpP2rGTtL8aAjIZt5at58HVa49W8UywcHXS13k3AQs3J9136nap/XcSsXB1Ku8UT8TM0ZG8hJJz5SUmYt1QP8UnO/oqqk4dubt2A6pOHTCxssLE1obCzCy8hg8matgo7Fr4P3rqp8bc2ZHce6U0JCRh3ehRDSIOr3TkzpoNqDp3LNGQkYnc3Iym2zagVau5tTSYlAOHjdJhqnIgP7nkobQgORnLOvr3m3trgqk5fRYO3d9BblGJmKEDy5zHrl1H4saOMErDv4kUCS/LixIJV4ui6AN0A5YJguAoCIIjsBboIYpiQ2ADsL7UMQ2BlaIo1gMWAmXf9/49GcAboig2BXwAX0EQuoiiGAksAX4WRdFHFEW9hLOn0FUPWFJUthkYw7/M3mMnibp2k0/e6FS8z0mlZP2MMWydM5E9IeGkGvMa0QD+CAkjOu4GPd7s8lzrMRS1Ws2VK5cYMnQE03+aRVjYcc6fP/fkA/8Be4+dIuraLf73hi4Xdcv+EFr61NNz4iuCX1YsZNmsaYwd3J8FK9dw996ziT4awp17idy8E8+25XPYvnwuZyOvcOGK+K/r+Au1Ws2D7EzG/RTMB736s3DGSIOi0C8LUaNmoGzdjFZh21AGNOPh3QS0ajUpB4+TvO8oLQ9vpPHqINJPnkerVv8rmtTqQrYuGYxf4P9QOlYDQPBpz8AZB/l64k686rVk+4rn52jsCY0g6tptPn0kQp2Snkns7Xu0aGD8W6unQRw9A7tWzWh5bCt2Ab7kFvWJpWd1KgteHKnTniO122Hf1h+7Fk2fq5aK5tqMWdg0a0qTrZuw8fUlLyERrVqD60fvkxYSqpcf/ryI/XEWts198f3tF2ybNyU3IRHUGgDC2r3Kmbc/5sqgEXiPHopFqRTAZ42yQyCpf+7l0odvEzdqCO4jx+heIRZhWbsumtxccm88PiD2oqDRap/p33+BCo+EF7ESQBRFURCEs4A/uijyBVEUrxTZrAIWCYJQpWg7VhTFv5KL16Jz3g15j60AfhIEoSW6Gd+d0TnjfzzhOL8n6BJFUfzLqwsHyh/9YiCOSlsSS6V2JKWllxvNPhUZxertf7D4h++LU1BK46C0xbOaK+ejY+no38QgDQ5KW5JSSnJkk1Ifo+HiFVZv/Z1FE4eVq+GfYm+vIjml5PV+Skoy9qUiscU2ycmoVA6o1Wpych5gbW2NvUpFvfoNsLGxAcDXtxlxsTH4+DQ2SIOD3SP9kZqBg115/RHNqh1/sGRcSX9ExlznfHQcW/eHkJObR6FaTSULc779qHuZ4/9Wg72S5JSS19LJqak4GODYO9jr3mq4OjvhU78uMddu4Obi/ISjyjuPHUmppXWk4aB8Oh0hJyOoV8sLy0q6NCX/Jo24JMbSqO7T594e+P1Xju7XvUL38K5LakpicVlain7UG3SR6b8i3wBppSLjSntHfP3b61JJatVDJpdzPysDa5u//zyH9/5CyP7tRRrqkVZKgy4S/3RRcABbewfSUxNQqpxQqwt5mJONVZWnf3OVG5+IhVtJtLiSm3PxAL+/yLuXxNmPdANOFZUtce7emcLM+wDEzVhK3IylAPismsmDv3nDUx6nDq7nTMivALh5NCArrSQqn5WWgLVd+RHUXWvGoXSqQYvOPYv3WVqVtHuTNu+x/9eZBmlxtLPVSy9JSsvE0c6mjN3JSyLBO/ezbPS3mJnq/yzuP3me9r4NMDExPG3tL/LuJVGpasm1ZeHqVLZPEpI5/0mpPumm65OqPd8j8/QF1A9yAEjefwzb5j6kh50xWs/jyI1PpFJVZ/66s1m4OZN7N5Hc+ESUbUsGU1tUdSLt6Cmj6shPSsLcuaQtzJ2cyHvEqc5PTuZKf93gXLllJRw6d0R9/z7WPo2wadoY14/eR2FZCZmpKeqcHK7PmmeQhryEJCxK3evMnR3JS9Tvj/ykZC59MwgAhWUlHF4JpPC+7hr56yEg9/ZdMk5FUKVubXJv3TFIA0BBSjJmDiX3J1MHBwpS9FPX7F99ndgRurZ4cOUyclNzTGxsKMzQfa/t2nck7fABg+uWeDF4USLhz5JC9D/X45KQBwF2gF9R1HrH39gaQm6p/9U8owedOl41uJ2QRHxSCgWFhew/EUGbpvqvM8Xrt/lx+QZ+GtoPpU3J80hiajq5+fkAZGU/4EJ0HDWMeJVYx9uD2/cSiU9MpqCgkAPHT9G6mY++hms3mbH0Z34a8Z2ehmdJrVoC8fF3SUi4R0FBASEhR/Hzb6Fn4+fXgoMHdINWQkNDaNjQB5lMRtMmvty8cYPc3FzUajWXLkXqDeh8WuoW9cfdov74M+wMrZvqv84Ur99m2oqNzBzSF6VNleL9k779jF0LJvPb/EkM+OQturZubrADDiDU9OLOvQTuJSZRUFDIoWMnaNnc96mOvZ+dTX5BAQAZWVlcihJxr2ZcNKe2t6f+9yI0nFbNnu6hxkllz7kr0RSq1RQWFnL+cjQ1qho2E0jga+8xac56Js1ZTxP/thw/vAetVkusGEmlylZ6qSgAtkoVFpaViRUj0Wq1HD+8hybNdYMAm/i1JSpS59wk3L2JuqCAKtZPdoDbv/oBP8zaxA+zNuHTvB3hR3aj1WqJEy9SydLKICfcp1lbThzeDcCZsIMIDZoZNFtM5plIKnvXoFINN2Smpri825XE3w/p2Zja2xZH07yG9uHOz1t1BXI5pkUP1lXq16JK/VqkHDiOITTv2IN+E3bQb8IOajfuyIUTv6HVarkddx5zyyrlpqIc3DaHvIf36fLRKL39pfPHxXOHULl4GaSlrmc1bickczcpVXedhp+jTRP92Vmib9xhavCvzBr0hd51+hf7ws7xSgvDAhaPknkmEkvPkj5xfqcrSXv0UxhMlSV94jnoS+6s2wZA7p172LVqhkyhQGZigrKVL9mi8SlCf0fSrkO4faK7F9n6NaIw6z55Cckk/xmKQ2AAJrbWmNha4xAYQPKfoUbVkRV5mUo1qmPh5orM1ATHrq+Qelh/sL6JbUlbVP+yNwnbdA/Z0cNGcbLjq5wM7ErcjNkk/rbbYAcc4H7kZSq5V8eiqhsyUxOcXutCykF9DaZ2pTR81ZuELToNJtZVkJmZFtvYNPHhQaxx6UEPoqMxd6uGmbMLMhMT7NoHknlC/3rLT0qkShPdmw+L6jWQmZkVO+DIZNi16/DS5INrNc/277/AixIJ/wyYLAhCTaAxugiyFggWBKG2qEv47QmcE0XxviAIAF6CILQWRfEY8DEQKYpiliAIsUBDQRDMi87xLrrUk0exBe6JopgrCIIbupz0xUVlWcDjElPDn6DruWCiUDDksw/pP3U+Go2GN9q3xLOaK0s376KOZ3Xa+DZi/vqt5OTlMWqObjoyZ5UdM4d+zY27Ccxbt7X4XD1eD8S7uuF5tyYKBYO/6MHAybN1U9F1CMCzmhvLNu2gjpc7rZv5sGDtr+Tk5jE6SNeUTiolP43QRXf6jvmRm/H3yMnNo1ufIYz6uhf+PobnjCsUCvr2+5ZxY0ah0Wjo1PkVatRwZ93aNdSsWQs//xZ0fqULQTOn82XvXlhVqcLw4bofd6sqVej+1tsMGvgdyMDXtznNmvsZ1RZDe71P/2kLdf3RrgVe1VxZ+utu6nhUp41vQ+Zt2M7D3DxGztVNReZsryRoaF+D6/o7DQP6fM7Q8VPRaDS82rEdHtWrEbx+M4K3J638fImOiWXMtCCysx8QdvoMqzf+yuoFQdy8fZegxcuRy2RotFo+fudNvVlVDNUx6ItPGTRxBhqNltc6tsGzelVWbNxKbS8PApo3ISrmGqOmz+X+gwccP32Olb9sZ93cabRr0ZwzkVH0HDgKmUyGX+MGBDylA18ejZq24mLECYb2fRtzcwu++G5scdnYgT2YNEeXOdbzq2EsnzeR/Pw8GjZpScOmLQFoE9iNFfMnMeq7DzExMeXLgT8YPF1ig6YBRJ4NZfTXb2JmbkGvb8cXl00Y9CE/zNoEwJaf53Ay5A/y83IZ+kUXWgd2p9uHfQno2J2Vc8cy6utuVLayoc+gaQbVr1WruTxoEs13rtRNh/fzVrKjYqk59jsyz14i6ffD2Lf2Q5j4PWgh7fhpLg+cCIDc1AT//bop0grvZ3O+97B/lI5Ss2FbYi6GMG9EZ0zNLHjz85Kp9Rb/0J1+E3aQmZbAsd1LULl4snTC20DJVIQnD6xFPH8YuVxBJSsbuvc2rC1MFAqG9nyH72YsRa3R0K2tH15VXViyZS91PKrRtml95m3cycPcPEbMWw2Ak70dswd/AUB8chqJaRk0qW2Y8/8oWrWaK0Mn47t9BTKFnDtrt5EdHYv3aF2fJO89jLJ1c2qNHwRaLWnHI7gyWNcnCTv2Yd/Gj1bhv4FWS8qBUJL/OGKUDp+1Qdi3bY6Zyo4O148SM3E+sqLI/61lm0jaexSHV9vSLno/6ocPufiF7r5ZkJ5JzNRFBIRtASBmykIK0h8/wPNvUauJnfwjDVYsRiaXk7DtN3Ji43D/rh/3L10h9fBRbJv74jGoP2i1ZEacIWaiYf3+JLRqNVcnTKNR8GJkCjn3tuwgJzYOjwFfkxV5mdRDR7H188VzcH/QQsbpM1ydoPvuWnp5IkwaCxoNyOXcWrpKb1YVg9CouT1/Ft7TZyGTy0nd+zu5N6/j0qs3OWI0mWHHubtkAdUHDcPxnQ9Aq+XmjCnFh1s19KEgKYn8e/HPolmeO//F1L5/iqyiG6VoYOYEdE6wJWUHZk5F97BQ3sDM8+gGZuZQNDCz6LglQCAQj27wposoiu+WHqQpCEIN4NeiOu8AacBVURTHC4LgAWwvkvi4gZmP0zVTFEXfIju97SeRce5QhX9DNSbGjf5/1qRaVqtoCThmxlS0BAByLFVPNnrOmKjzKloCAHGK55uX+zTkq1+M2EV2s4rPC87c/4/HnD8TXjczfi7zZ8XxjoMrWgIA6ocVHyK08q5U0RIA0BRW+E8qNtXLvl2pCJocDDVu8YVnyIR1Bc+0Q374xLTCP9M/5cX4NdE5quMf3SmK4h88Pke7QBTFnuUViKJYbrhRFMXVwOqi/28CzR9jdx1dfnhpVKXKy9UliuIRwPdx2xISEhISEhIS/x/RVPzz4QvHi+KES0hISEhISEhI/Eep6MyLF5EKd8JFUTT4dYIUYZaQkJCQkJCQkHiZqXAnXEJCQkJCQkJC4r+NRgqEl0FywiUkJCQkJCQkJJ4rWskLL4PkhEtISEhISEhISPy/RBAES3QLLzZFt9bMEFEUd5dj1w7YA1wt2pUniqJfqfKxQK+izdWiKE56Ut2SEy4hISEhISEhIfFceYHHZQ4BskRR9C5ar+aYIAjeoihml2N7pbxppwVBaAO8B/y1+MlJQRCOiqIY8ncV/xdXzJSQkJCQkJCQkHiB0Gi0z/TvGfIBsBRAFMUYIAJ41Yhz/CyK4kNRFB8CPxft+1ukSPgLhOy/sg7rM0BBYUVLoNDMsqIlvDCoFS/GIk4WivyKlvDCRC7yqlT87dvZOreiJQDwUOFY0RIwd3oxrhG5ScWvX5Id+7CiJbwwWKosKlrCfxZBEGzRrX7+KBmiKJa3UvrjqA7cLLV9C3jcioG1BEE4CxQAi0RRXFPqHEceOUebJ1Vc8XdxCQkJCQkJCQmJ/zTPYZ7wgcAP5eyfAIz/a6PIaa7+mHM4GVDfWaCaKIqZRSurHxAE4a4oigcMOIcekhMuISEhISEhISHxXHkOL/vnULQK+iPoRcFFUWzydycRBOEWUANILtpVHTj8qJ0oilml/r8uCMIOoBVwAF3ku0Yp8+rA7Sd9AMkJl5CQkJCQkJCQeKkoSjkxJO3kcfwKfAVEFA3MbAZ89KiRIAguQIIoilpBEJRAZ2BMqXPMEwRhYdH2p8B3T6r4RUlvlJCQkJCQkJCQ+I+i0Wqf6d8z5CfAVhCEWGA30EcUxfsAgiBMFAShb5HdO8AlQRDOAyHoBmL+BsUruW8DLhf9bRNF8eiTKpYi4RISEhISEhISEs+V55AT/kwQRfEBuukFyysbV+r/BcCCvznPeErloj8NUiRcQkJCQkJCQkJC4l9GioS/RISdv0zQz1vQaDS82b4VPd/srFe+/veD7Dx8AoVcjq21FWO/+gQXB/vi8uych3w4dDJtfRsy9LMnTl9ZvoZzkcxZtRG1Rku3jq359K2ueuUbd+1j58FjKOQKbK2tGP3NZ7g4qAD4/chxVm/RLULV693Xea1dK6M0AERERLBk6VI0Gg1dXnmF999/X688v6CAoJkziYmNxbpKFUaOHImTkxOFhYXMmTuXuNhY1BoNHTt04IMPjGuL8HORzAnegFqj4Y2Obfj07df0yjfu3MeugyG6/rCpwqivP8fFUdcWew6HsnrLLgB6vfsGXdsHGKXhfV7Y9gAAIABJREFU5NnzLFi+GrVGw2udOtDj3e565RcuX2HBijXE3bjFuCEDaNfKv7isw1sf4lFDN2DcSaVi6phhRmn4S8f85WvQFOt48xEdUcxfsYZrN24xbkh/PR2JySnMWLCUpJRUZMiYPm44Lk7GTTmn1WpZvWwu5yLCMDe3oN/AUXh6C2XsrsVGs2j2VPLz82js24JefQYgk8kICz3Elg3B3L19kymzluNVs7ZRGtYuD+LCmROYm1vQZ8A43L3Knud6bBTL5k0kPy+PRk1b8r8vByOTydi2cRlH/vyNKja6mbfe++RrfHwNu1bs27dCmDwCmULB3fVbuTF/pV65RVUX6s6ZhJm9koL0TC59M4K8e4nYtWqGMHF4sZ2ltweRfYeSvPeQwe0AurbYHDyDS+dCMTOzoOe3E6nuWaeM3Y4N8zl5dDc5D7KYuy6seP+BXWsJPbgdhVyBlbUdn34zHnsHV4M0nDx7gbkr16LRaHg9sB2fvNNNr/z85SjmBa/j2o1b/DD4W9q31C2AdzbyMvOD1xXb3bp7jx8Gf0sbvzLrdDwVytYtqTlmOCjk3Nu8nVvLgvXKzV1dqDNtAqZKOwoyM4kaMoq8hKTicoVVZZrv3U7K/sPETJxmlAa7gJZ4jxqGTC7n3pbt3F6xqowGYfJ4TJV2FGZmETVsFPmJpTRUrkyz3dtIOXiY2Mk/GqWh4fKpOHZtR35SKiGN3yjXpu7s0Th2aYv6YS4Xeo8g69wVANz+152aI/sBEDNtMXfX7jBKw4ukw8bfnxoDByFTyEnauZN7a3/WKzdzdsZz9BhMbW0pzMoibvx48pN1faLq2hW3Xp8DcHd1MCl79hit49/gGc/t/Z9AioS/JKg1Gmas2szc4d/wy8yx7DsRwbU79/RsBPdqrJkynA0zRtPBrzHzN+jfGJb+uhuf2t7Ga1BrCFqxnlmjv2fj7EnsDz3J9dvxeja1PGqwavpY1s2aQIcWvixcuwWAzPvZBG/eyYppo1n54xiCN+8kK/uBkTrULFy0iEkTJ7J0yRKOHD3KzVu39Gz+3LcPKysrgleupPtbbxEcrPvBO3bsGAUFBSxevJh5c+eyZ+9eEhMTjWqLmcvXEjT6ezbMmcKB0JNcv333kbaoTvCMcaydPYn2/r4sWrsZgKy/2uLHsayYPs7otlCrNcxdGsz0H0ayZsEsDh07zo1bd/RsHFUqRgz4msA2ZZ04MzMzVs6Zwco5M/6RA65Wa5izNJgZP4xgzYIgDparw56RA/rRsRwdU+cs5MO33mDtwlksmTkFO1sbo7WcjwgnIf42c5dt4stvh7Jy0cxy7VYsDKLPd8OYu2wTCfG3OX8mHIBqNTwZPGoqdeo1MlrDhTMnSLx3m5lLtvL5NyNZtXh6uXarl0yn9zejmLlkK4n3bnPxbInz+Uq3j5gyZz1T5qw32AFHLqf2j2M493E/TrTuhvNbXalcy1PPpNYPQ7i3eSfh7d/m2qzFeI8eCED68dOEd3yX8I7vEvHO52ge5pJ65IRh9Zfi0rlQku7dYuL8nfToO5YNy6aUa9fQty0jflxXZn81j9qMmr6esbN+pUmLQLatnWNQ/Wq1hlnLVjNz7DDWzpvBgdAwrt/W/246OagY9d1XBLZpqbe/SYN6rJo9jVWzpzF34mjMzc1o7tPAoPqLkcupNX4UF774mlOvvoXT612w9NbvE+8Rg0jYsYvTb7zHjQXL8Bw8QK/cY+A3ZJ4+Y1z9RRpqjh1JZJ9vOP3G2zi+1gVLL30NXkMHkfjbbs50f5+bi5biOai/Xrl7/2/IiDhrvAbgzpptnHr9i8eWO3RpQ2Vvd47U6Uxkv7HUXzAeAFM7G2qN+Zbjrd4ntOV71BrzLSa21i+3Drkc98FDEQcN5OJHH2LfqTOV3D30TKp/15+UvXuI/N8n3A1eSbV+XwOgsLbG7fMvuPTF51zq/Rlun3+BokoV43T8S2i1z/bvv8BL44QLgjBeEISnXg1BEITugiA0fwq7XoIg1HqW5yyyHS8IQvkegBFcjr1BVWcH3JxUmJqY0LlFU0IiLurZ+NarhYW5rokaeHuQlFYyaDjq2i3SMu/j39DwyN5fXIm9RlVnR9ycHDA1NSGwVXNCTp/Ts2lavzYW5uYA1KvpSVJqOgAnL1ymWaN62FSxwtqqMs0a1SP8/CWjdFy9ehVXV1dcXFwwNTWlbZs2hIeF6dmEhYcTGBgIQOuAAM5fuIBWq0Umk5Gbm4tarSY/Px9TExMsLQ1flKe4LZwddW0R0Jxjj7ZFgzolbVHLq7gtws9folmjulgXt0Vdws9FGqwhOiYWN2cnXJ2dMDU1oUPrlhw/dVrPxsXJES/3Gsjkz+9Sj4qJxc3ZWU9H6KmIcnXI5foLidy4dQe1WkMzn4YAWFayKG4zYzh98hhtOnRBJpNRq3Z9HjzIJj0tRc8mPS2Fhw8fUKt2fWQyGW06dOF0+DEAqlZzx7Xq46aTfTrOngohoH1XZDIZ3kIDch7cJ+MRDRlpKTzMeYC30ACZTEZA+66cOfnEMTxPhU2TBuRcv8XDm3fQFhSSsGMvDl066NlUruVFWugpANJDT+HYpX2Z8zi90ZmUQ8fQPDR+QZ6Lp4/g3+51ZDIZnrUa8jDnPpnpyWXsPGs1xMbOocx+oX4zzMwrAeBRsyHpqYY9MEfFxOHm4oRr0XXaMcCf0FP6jqyLowPe7tWRyR6/yM2RsFP4N2lk9HfTumF9Ht68Te7tu2gLCkn8/Q9UHdvp2VT29iI9TNcnGeGnUAWWlFvVq4OZvT1pofr3OYM13LpN7h2dhqQ9+7DvoK/B0tuTjJNFGk6e1iu3qlsHM5WS9OPGawBIC42gIC3zseVO3Tpyd92OIg0XMLWxxtzZAYfOASQfPE5BeiaFGVkkHzyO4yutX2odVnXrknvnDnnx8WgLC0k7sB+7Nvrru1Ry9yArQnc/zTpzprjc1s+fzNOnUGdlob5/n8zTp7D1b2GUDomK46VxwtFNyG7IkmTdgadxmHsBT+WEG3DOZ05yegZO9nbF2472tiSnP35mnp1HTtCiUV0ANBoNc9dto3+Pt/6ZhrQMHFXKUhrsSE57vIZdh0Jp0bi+7tjUdH39SjuSi5xSQ0lJTcVBpSreVqlUpKam6tmkpqaictD9qCsUCiwtLcnKyiIgIAALCws+7tGDT3v25O133qGKEdGD5LR0nEq1hYNS+befZ/fBEPyb6KJoKWnpj7SjkpQ0w9siOTUNB1VJupGDvb1BbZqfX0CfQSPpN3Q0x8JPP/mAx5CSmoajng4lKalpT3Xs7fh7WFW2ZMy0IHoPHMHiVetQq42fTDY9NQV7VUkqi729I2mp+g5wWmoKSvsSh09p70j6Izb/hPTUJJSqkvUflCpH0lKT9GzSUpNQ2pfo1GkosTmw51dG9f+Y5fMm8SA7C0Mwd3YkLz6heDsvPhFzZ/30nvtXRBxf0z2kOnYNxKSKFaZ2+m8gnLu/SsL2vQbV/SgZqUnY2TsXb9sqnch4pC2eluOHtlO/sWFpW8lp5X03Db/WDh4Lo2OA8Q6OubMjufdK9UlCEuZO+muEZEeLOLzSEQBV546YWFlhYmsDMhneIwcTNz3I6PoBzBwdyUsopSExEfNH0r6yo6+i6lSkoVMHPQ1ewwcTN2PWP9LwNFi4OvHwTonO3LsJWLg5YeHqRO7tUvvvJGLhasg6Ky+eDjMHR/KTSh4s85OSMHXQfxjNiY3Brp3uIdmubTsUlStjYm2NqYMD+Yl/f+yLhlajfaZ//wVeipzwUvMunhAEwRJwB8xFUVQLgnAFOCyK4jdFUeo56FZL6gYECoLwBTBLFMWfyznvZ4AvurkdJwND0E3QPh3oUmT2BzAcCHz0nMCfwEbAGrAAfhdF0fj3+s+IvcdOEXXtFkvG6V4xb9kfQkufenpO8PPmj5AwouNusGhihTeHHqIoIpfLWb9uHdnZ2QwZOpTGPj64uLg8tzr/OHqC6LgbLJw04rnVYQy/rFiIg72S+IREvh87Cc8a1XBzcX7ygc8QtVrNxSvRrJj9I44OKib8NJc/Dh3htU4dnnzwf5SOr75D9/d7g0zG1vVL2BA8ly/7j32mdcSMn4kwbTSuH7xJRvgZcuMT0JZ6+DFzVGFVuyaph48/03qN5WTI79yKu8KgiSufbPyMSUlLJ+7WbfwaN3yu9cT+OItaP4zE+e03yTh9htyERFBrcOvxAWlHQ/Xyw58X12bMwnvsCJy6dyMz4ix5CYlo1RpcP3qftJBQvfxwiX+HW/Pn4T54CA6vvcb9c+fJT0pCq3n2q978GzzjaQX/E7wUTniRg/010FIUxWxBEEKBZoIg3ARygL/CIx2Bg6Io7hMEYScQUTSlzOPOu0oQhJ7ATFEUdwMIgtAP8AH+WmFpL7o5Ixc/ek5BECyAN4o0mQL7BEHoIoriH8+6DRzsbEksFcFJSs3Awc62jN2pyGhW7fiDJeO+x8zUFIDImOucj45j6/4QcnLzKFSrqWRhzrcfdS9z/N9qUNqSlFIS4UxKTcdBWY6Gi1dYvfV3Fk0cVqzBwd6Os5fFkmPT0mlSr+yAuadBZW9PckpJ5DIlJQV7e3s9G3t7e1KSk3FQqVCr1eTk5GBtbc2RI0fwbdoUExMTbG1tqVu3LjExMQY74Q5KOxJLtUVyWhoO5TzknL5wmTVbd7Nw0ojitlAp7Th3ObrYJik1jcb1DE8TcrBXkpxS8gYgOTW1XA1/dzyAq7MTPvXrEnPthlFOuMpeSZKejjRU9sq/OaKUBpU93h7uuDrrIkkBfr5cEWN5rdPT179v91YO7tMNcvWqWYfUlBJHITU1CaW9Ss9eaa8iLbUkJSItNQm7R2wMZf/vv3Jkv+7Vtad3XdJSSiJUaSn6UW+dBv3ouE6DzsbGtuS73K5zd4ImDzJIS15CEuauJf1o7upUxoHLS0zm4ue6h3SFZSUcXwukMOt+cbnTm11I2nsQbWGhQXUDHNm7idCD2wCo4VWP9NSSqGFGWiK29oYNuo26GM7erSsYNHElpqaGvAzVvaEq+900LBhx+PhJ2vj5YmJi/M9lXkISFqWuLXNnR/IeGYuSn5TMpW90fa2wrITDK4EU3r+PdeOG2Po2wfXj91FYWiI3M0Wdk8O1mXMN0pCflIS5cykNTk7kPeJU5ycnc6X/YADklpVw6NwR9f37WPs0wqZpY1w/eh+FZSVkpjoN12fNM0jD05Abn0ilqs789Wtn4eZM7t1EcuMTUbYteRFtUdWJtKOnnnn9/6aO/OQkzBxLouhmjo4UJOunaxWkpBAzUhfAkVeqhLJ9e9TZ2RQkJ1OlSRO9Y++f/Wf5+hL/Pi9TOkppDqKLTAcCu4B0QRCqFm0bN4y/hEBgtSiK+aIo5gOrivaVhwL4SRCEC8AZoD46B/6ZU9erBrcTkriblEJBYSF/hp2hdVP9QULi9dtMW7GRmUP6orQpSbGY9O1n7Fowmd/mT2LAJ2/RtXVzgx1wgDreHty+l0h8YjIFBYUcOH6K1s30P6547SYzlv7MTyO+Q2lTMljFr1E9Tl24TFb2A7KyH3DqwmX8GtUzWANArVq1iI+PJyEhgYKCAo6GhODv769n4+/nx4EDBwA4FhpKo4YNkclkODg6cuHCBQByc3OJjo6mWrVqBmuo4+3BnXtJJW0ReooA38Z6NuK1m0xfuoYZI/rrtYW/T/0ybeHvU99gDUJNL+7cS+BeYhIFBYUcOnaCls2fbuaG+9nZ5BcUAJCRlcWlKBH3alUN1gBQuxwdrZo3fbpjvb3IfvCAjExdysXZi5dxr+ZmUP2vvP4OM+avZsb81TRr0ZqQQ3+g1Wq5Gn0JS0sr7JT6DradUkWlSpW5Gn0JrVZLyKE/aOZnfG4pQKfX3iseSNnUvy2hh/eg1WqJFSOxrGyF7SMabJUqKllWJlaMRKvVEnp4D02a63I9S+ePR4QfoWp1L4O0ZJ27hKVndSyquyEzNcG5+6sk79NfgdlUaQtFOdDuA74kfuN2vXLnt14lYbtxMy20e/VDxszczJiZm/Fp3p7wI7vRarVcu3oRC0urcnO/H8eta9GsXzqZfiPmYG3zdA92pald05M79xKIL/puHgwNJ6DZ0303/+JA6AkCW/+zXNv7kZep5F4di6q6PnF6rQspB/XHAJjalfRJ9a96k7BF91AXNXgUYW27EN6+K3HTZ5GwfbfBDjhAVuRlKtWojoWbKzJTExy7vkLqYX0NJralNHzZm4RtOg3Rw0ZxsuOrnAzsStyM2ST+tvu5OOAASbsO4faJ7vfJ1q8RhVn3yUtIJvnPUBwCAzCxtcbE1hqHwACS/wx9Lhr+LR3ZUVFYVKuGuYsLMhMTlIGdSD8WomdjYmNT3Ceun/Ykabcu4JBxMhyb5n4oqlRBUaUKNs39yDgZ/g8+8fNHSkcpy0sRCS+HQ+gmRL8JrAA0wOtAY8D4ofyGMwiwA/xEUcwVBGEZurSUZ46JQsHQXu/Tf9pCNBoNb7RrgVc1V5b+ups6HtVp49uQeRu28zA3j5FzVwDgbK8kaGjfJ5zZMA2Dv+jBwMmzddN9dQjAs5obyzbtoI6XO62b+bBg7a/k5OYxOmgxAE4qJT+N6I9NFSs+e+d1Ph8xGYDP330DmypWRulQKBT069ePMWPGoNZo6Ny5MzVq1ODntWupVbMm/v7+vPLKK/w0cyaf9+5NlSpVGDFcN+3aG6+/zqzZs/mqb1+0Wi2dO3XCw8PjCTWW3xaDvujB95OCUGs0vN6hNZ7V3Vi+cTu1vd1p3awxC3/ezMPcPMYELSpqC3tmjByAdRUrPnv3DXoPnwjAZ+91w9qItjBRKBjQ53OGjp+KRqPh1Y7t8KhejeD1mxG8PWnl50t0TCxjpgWRnf2AsNNnWL3xV1YvCOLm7bsELV6OXCZDo9Xy8Ttv4l7dOCfcRKFgYJ/PGFKko2vH9nhUr8bK9ZupXaQjKiaOsdOCuJ/9gBOnz7Jq4xbWLJiJQiGn32ef8P3YyWjRInh58HrnjkbpAGjs24JzEWEM+PIDzIqmKPyLYd/1Ysb81QD0/nowi2ZPoSA/D5+m/vj46h7iTp04yqqlc8jKzGD6hKHU8KjJ6EmG5cE2atqK8xEnGNL3bczMLfjyu5JUktEDezBlznoAen41jGXzJlKQn0fDJi1p1FQ3O8emNfO5ef0qMmSoHF34/OuRBtWvVasRR06lyaalyBQK4jdu54EYh9ewb8i6cJnkfUewa9mMmqMHotVqyQg/Q1TRdQlgUc0VC1dn0k9E/E0tT0f9Jq25dDaUsd++gZm5BT2/nlBcNnnI+4yZqZsxaOva2Zw+tpf8vFxG9OlMq45v8cYH/di2djZ5uTksDxoKgFLlwtcjnt4BNVEo+P7LXgyeMF03fWbHtnhUr8qKDVuo7e1BQPOmRMXEMXr6bO5n53Di9DmCN21l7bwZANxLSiYpJQ2femWnVTQErVrN1QnTaBS8GJlCzr0tO8iJjcNjwNdkRV4m9dBRbP188RzcH7SQcfoMVydM/Ud1lkGtJnbyjzRYsRiZXE7Ctt/IiY3D/bt+3L90hdTDR7Ft7ovHoP6g1ZIZccboqRD/Dp+1Qdi3bY6Zyo4O148SM3E+MlOdK3Jr2SaS9h7F4dW2tIvej/rhQy5+obuGC9IziZm6iIAw3YxbMVMWUpD++IGVL4UOtZobQTMR5sxDJpeTvHsXD69fx+3LPjyIiiIj9BjWTZpSrd/XaLVa7p8/x42ZP+kOzcoiflUw9YN100zeDV6JOsuw8SP/Nv8Vx/lZIntRVzB6FEEQsoA6oijeLZolJQFIAeqhy+veCMSIotipyH4ekCiKYvlzYpWcdyfwiyiK64u2+wFvA39NgL0H2CqK4pJHzykIQhAgF0Xxe0EQ3ICzwGJRFMcLgjAesBJFccjTfsbMswcqvDPUps/lGcJgMiyfX47202Lz0PCpC58H+SaGz97yrJFR4V9NABIUxj0oPEvy1YalRDwvMtsaP8/+s8LkgPEDep8l9RSXK1oCl9/sXdESAJCbPH6Wl3+L7NiHFS3hhUHlWzZlsyLwCztZ4V+Mb2ZmPNMfkoVDbCv8M/1TXqZ0lCDgkCAI5wFL4DQ6p7ug6H879FNR1gIfC4JwXhCET//mvMuAcUV2gUXbF4FzRX8XgeWPOec8oJUgCJeAlejSZCQkJCQkJCQkJEqh0T7bv/8CL00k/P8DUiS8BCkSXoIUCS9BioSXIEXCS5Ai4SVIkfAXCykSXkLf6enP9IdkyXC7Cv9M/5SXKRIuISEhISEhISEh8Z/gZR2YaRCCIHQFyhvlMkoUReOmAJCQkJCQkJCQkHgqpMyLsvy/cMKLHG3J2ZaQkJCQkJCQqAA0/5VE7meIlI4iISEhISEhISEh8S/z/yISLiEhISEhISEhUXFI6ShlkZxwCQkJCQkJCQmJ54q0WE9ZJCf8BUIrr/ju0MgUFS0BAK2s4mcekmk1FS3hhUFqixJkshfjh0RTWPE6CjQvxv1CLiuoaAloCyq+P0C3fLTEi4NcUfG/ZRIvLhXv9UlISEhISEhISPynkSLhZZGccAkJCQkJCQkJieeKRsoJL4M0O4qEhISEhISEhITEv4wUCZeQkJCQkJCQkHiuSOkoZZGccAkJCQkJCQkJieeKNEVhWaR0FAkJCQkJCQkJCYl/GSkS/hIRdv4Ss1ZvRqPR0K1DAD27d9Er37B7P78dOo6JQo6ttRVj+vbExcGeqzduM33Feh48zEUhl9PrrVfp1LKZURrCz11kTvAGNBoNb3Rsw//efl2v/PxlkbmrNhB38zYTBvWjfYuSehat3cyJMxcA6PVeNwJb+RmlASAiIoKlS5ag0Wh4pUsX3n//fb3ygvx8ZgYFERsTQxVra0aOHImTkxOHDx1i69atxXbXr19n3vz5eHl5Gawh7Fwkc1ZtRK3R0q1jaz59q6te+cZd+9h58BgKuQJbaytGf/MZLg4qAAZOns3lq3E0rF2ToFEDjGgBHSfPnmfB8tWoNRpe69SBHu921yu/cPkKC1asIe7GLcYNGUC7Vv7FZR3e+hCPGtUBcFKpmDpm2D/QcYF5K35Go9HwWqf2fPJON73y85ejmL9yLddu3OKHId/RrmVJ3ycmpzB9wXKSUlORIWPG2GG4ODkYpUOr1bJ62VzORYRhbm5Bv4Gj8PQWythdi41m0eyp5Ofn0di3Bb36DEAmkxEWeogtG4K5e/smU2Ytx6tmbaM0rF0+i/MRJzA3t6DPwLF4eJU9z/XYKJbOnUR+Xh4+vi3535eDkJWamnPP9vVsWDWPxev2UcXa1iANqg4B1J42AplcwZ11W7k+d4VeuUVVF+rPn4yZvR0F6Zlc7DeCvPhElAHNESYPL7arXNODi18OIWnPIQNbQYdWq2Xrqh+5fO4YZuYWfPL1ZKp51i1jt2vjPE6F7CQnO4ugtafKlJ8P38/KWYMYOm0T1b3qGaThRblnKdu2oua44cgUcu79so2bi4P1yi3cXKg9YyJmSjsKMjO5MnAUeQmJALSPO0e2GANA7t0EIr/sb5yG1i2pOWY4KOTc27ydW8v0NZi7ulBn2gRMizREDRlFXkISAO2iz5J9VachLz6ByL7G3bcaLp+KY9d25CelEtL4jXJt6s4ejWOXtqgf5nKh9wiyzl0BwO1/3ak5sh8AMdMWc3ftDqM0vEg6rP38qT7ge2RyOcm7d5Kwbq1euZmTEx6jx6GwstJdz0sWkhkehszEhBpDR1C5dm3Qark1dzb3z501Wse/gbRsfVkkJ/wlQa3R8FPwRuaPHoijvR29Rk6jtW9DPKu6FtvUcq/OmmltsTA3Y+ufR1mwfitTBvbBwsyMH775jOouTiSnZdBz5BT8G9WjSmVLwzSoNQQtX8uccUNxtFfyxfAJBDRrjEc1t2IbJwclo7/9go079+ode+LMecRrN1kdNJGCgkK+HfcjLRo3pLJlJcPbQq1m0cKFTJk6FZVKxcABA/D386N6jRrFNvv+/BMrKytWBgdz9MgRgoODGTlyJO07dKB9hw6AzgGfNHGiUQ64Wq0haMV65o4bjKPSjs9HTKK1rw8e1Ur1h0cNVk1vh4W5Odv2HWbh2i1MHtQXgB7dXiE3P58dfx41uO7SGuYuDWbmhNE42NvTd8hIWjX3xb161WIbR5WKEQO+5pftu8ocb2Zmxso5M4yuv7SO2UtXMWvCSBzs7ekzdAwBzZvgXq1Eh5NKxaj+fdm0Y3eZ46fMWcz/3utOM58G5DzMRS43fl7d8xHhJMTfZu6yTcSIl1m5aCZTZi0vY7diYRB9vhtGTaEeP44fwvkz4TT2bUG1Gp4MHjWV5QuMb5cLZ06QEH+boKVbiBMvsXrxDCbMDC5jt2rxDL74ZiReQn1+mvA9F8+G0ahpSwBSkxOJPH8SewdnwwXI5dSZMZqId74kNz6RFgd+IemPwzwQ44pNhIlDif9lJ/GbfkPZ2o9aYwcS2W8kaaGnCGv3DgCmtja0jthLyuETxjUEcOXcMZISbjJu3u/ciLnILysmM2TqhjJ29Zu2pU2Xj5jY/7UyZbkPH3Bk7zrcazY0uP4X5Z6FXI4wcRTnPulDXkIivjs3krz/CDmx14pNvEcNJmHbLhK27sSuRXO8hvXnyqDRus+Rm8fpru8/7uxPraHW+FGc7/WVTsPWDaQcekTDiEEk7NhFwvZd2Po3x3PwAKKGlmiI6PbBP9MA3FmzjRuL1uETPL3ccocubajs7c6ROp2x9WtE/QXjOdHqfUztbKg15ltC/d9Bq9XS+uQ2EncdojAj6+XVIZdTY9AQrn7fn/ykJOquWEVG6DFyb9woNnHp+Rlphw6SvGMbFu7u1PppNhffewuHbm8CcLnnJ5jY2lEraDZXvvgMXuCUDyknvCwvRTqKIAjjBUEwM8C+uyAIzZ+npsfU6y4IQsrzOPeV2OtUdXLEzckBUxMTOrX0JeQm+8A8AAAgAElEQVT0BT0b3/oCFua6Zqpf04Ok1AwAqrs6Ud3FCQAHpS121takZ903WENU7DWqOjvh5uyIqakJHQP8OHb6nJ6Ni6MD3u7V9CJ6ANdvx+NTtxYmCgWVLMzxrlGV8HORBmsAuHr1Kq6urri4uGBqakqbtm0JCw/XswkPCyMwMBCAgNatuXD+fJl8tKNHj9K2bVujNFyJvUZV56L+MDUhsFVzQh5pi6b1a2Nhbg5AvZqeJKWmF5c1a1iXyhYWRtX9F9Exsbg5O+Hq7ISpqQkdWrfk+KnTejYuTo54uddAJn9+l3rU/7F33uFRVN0f/2w6LaSHTqiHJr33Joqv5f3Zu9h9sYCIiIAFESwgCKhYEFGwooiogCK99w65FOklPQQC6fv7YybJbhICicnsEu/nefKQmbmz98vM2cmZc88998BBqlfN1dGnaydWb9iSR0co9SJqYbM56zhy/ASZWZm0a3kNAOXL+eVcs+KwacMquve+HpvNRsNGzUhOPk9CvPNXMiE+losXk2nYqBk2m43uva9n0/pVANSoGUG1GrWK3T/Alg0r6dqrPzabjfqNriE5+VzBGi4kU7/RNdhsNrr26s/m9bkvZLM/n8TdA57J9z26Eiq3voYLh49z8egJ7OnpnP55AWH9ezm1qSj1iF+5AYD4VRsI69873+eE39yPmL9WkXUxpcgastm1eRntu9+MzWajTsMWXEw+x9mEmHzt6jRsQeXAgkc/fv/+A/re8ihe3lf8JyAHd3lm+bdsxoWjx0g5fhJ7egbRvy4itJ/zPSnfoC4Ja417krBuIyHX9iroo4qNf/NmXDx6PEdD1O+LCOnT06lNhfr1SFhnjEQkrt9ISN+e+T/oHxK/ejPp8WcveTz85j6cnG1ElhM37MC7sj++VUIJ7deVmCVrSE84S0ZiEjFL1hB2XberWkeFxk1IPXGC1FOnsGdkEP/XYgK7dnduZLfjWaECAJ4VKpIea3x//CLqcG7rZgAyEhPIPHeOCo0aF0uHxnVcFU448BpQlCfwfwHLnfDSJDo+kfDgwJztsOBAYhISL9l+/rI1dGqZf9h2z8HDZGRkUKMYw/0x8QmEhQTlaggKJMbBsSyM+hG12LBtFympqSQmnWPr7kii4+KKrAEgLjaWkNBc/SEhIcTl+ay4uDhCQ4zUD09PT8qXL09SknOkYuWKFfTo2bNYGmLiE52vRXAgMfGXvh+/Ll1Np1bNitXXJTXExRMaEpyzHRocfMX3AyAtLZ0nhrzM/14cyar1my5/wiWIjU8gzElHEDHx8Vd07vGTp6lYoQIj357Eo8+/zEczvyYzs/hr/iXExRIcEpazHRwcRnycswMcHxdLUHCu/QQFh5EQV3LvzglxMQSHhuf5/Jh8bYIcdAaF5LbZsn4FgcGh1K7TsFj9+1UNJ+Xk6ZztlFNR+FUNd2pzbrci7EbjJTXsxr54VaqId2BlpzZVbu3PmbkLiqUhm8T4aAJDcqP5AcHhnI2PvuLzj/+9l4TYMzRr3f3yjQvAXZ5ZvuHhpJ6KytlOPR2Fb3iYU5vz+/YTer1xT0Kv64NXpYp4BRj3xMPXh7bzv6XNz7MJ6Vc859y3Shgpp8/kajgTjW+4s12cj1SEXtcHgJB+ffCq6KyhzdxvaD1nFiF9S/YFwRG/auFcPJGrM+XkGfyqh+NXLZyU4w77T0ThVy28oI+4anT4hIaSFp37fUiLicY71Plv86kZ0wnudx0t5s6n4YSJHH3/PQAuHjxAQNdu4OmJT9WqlJdG+ISV3vUoCex2e4n+lAXcPh1FRD40f10rIuWBCMBXKZUpInuBZUqpp83I9/vAaOBmoK+IPAZMVEp9dYnPXg5sBzoDQcAPSqkR5rGqwFSgFlAO+FYpNc48NgHogfFiEAs8opQ6muezfYGvgBPAUKWUZRazcNV69h06ysevv+C0PzbhLK9/8AWvDhyARylGRguiQ8tmRB78mydHvEmAvz9NpZ7lGhyJjIzE18+PiIiIUu9r0cp1RB46wkdvFD/nujT4fvqHhAYHcepMFM+/Moa6tWtSvWox0h/+AZlZWezcG8nnE8cRFhrC6+OnsHDpCm4s4Sjg1UJqagrzf/ySl0ZPKdV+1GvjafzOSKrf818S1m0m5dQZ7A4vPz7hIVRq3IDYpWtKVUdhZGVlMfer8dw/8E2X9G/1M+vg2Pdo+MbLVL39ZhI3biXldBRkGfdkbZfrSYuKxq9mdVp9O53kyANcPHai5DW8PZGGr71MlVtvIXHTFlLORIFpF+t69s/R0PKrzzi//wAppaBB40xQ337ELlxA1HffUKFpM+qOep3dD95LzO+/4Vc7gqbTvyD1zBnO796FPSvT1XILxZ5V/ABLWcXtnXDTwR4IdFZKnReR1UA7ETkKXAC6mk37AEuUUn+IyHxgs1LqgyvoogmGE+4HrBORtUqp3zAc6DFKqZVmKswSEdmklFoMvK2UGgpgOvrvAHdnf6CIBAFzgblKqRL5axoWFECUQwQnOi6B0MD8k7U27tzHzLkLmfb6C/h4e+fsP3/hIkPenspTd9/CNQ3rFktDaFAg0bG5Ec7o+ARCHaLzl+Oh22/moduNCXuvT/qYmsV0+IJDQoiNyY0sxsbGEhwc7NwmOJgYM2KemZnJhQsX8Pf3zzm+csUKehYzFQWMtB6naxGXQGhQQfdjLzN/+p2P3hjmdD9KgtDgIGJicyNzMXFxRbofocFGhLBalXBaNmvCgb+PFMsJDwkKJNpJRzyhQUGFnOGsoX6d2lSrYkRwunVoy579B4vU/x+//cSSP4yc93oNGhMXmxtZiouLJig4xKl9UHAI8Q6R6fi4aALztCkqi3+fw7I/fwGgboMmxMXkRj2Nz3eObgUGhxLvoDM+1mgTffoEMVGnGDHo/pz9owY/yOj3viAg0NnGL0XK6Sj8qlfN2farFm44dA6knolh+0ODAfCsUJ7wm64lwyFFrcot1xP1+xLsGRlX1KcjKxd9y9olxuTnWvWakRCbGzVMjIuiclDYpU511piSzOnjB5ky+hEAkhJj+eTdZ3ly2NQrnpzpLs+s1KgofB2ipb5Vw0mNch4RSIuOYfdTQwDwLF+O0Ov75tyTNLNtyvGTJK7fTMWmjYvshKeeicbPQb9vlTBSo5ztIi06ht1PO2i4ri8Z5wrQsHEzlZo0KhUnPOVUFOVqVCH7r51f9SqknIwi5VQUQT1yB7j9aoQTvyL/JN6rSUdaTAw+YbnfB5/QMNJjnEfNQm+8if0vGN/V5D27sfn64FU5gIzEBI5PnZzTrvG0T0k5fqxYOqxCT8zMz9WSjuLIEqCv+fMrkCAiNczt4kzh/1IplaGUOg98B/QWkQpAT2CKiGwHNgLVgOyEq/4isl5EdgNDgZYOn+cHrAY+LCkHHKBxvQiOn4nmVHQs6RkZLF67me5tWzi1UYeP8fb02YwfNpCgyrkOZ3pGBi+9N43+3TvSp2ObYmtoVL8OJ05HcSoqhvT0DJas3kDXtq2u6NzMzCzOnjsPwMEjxzl49DjtWxYvPaNhw4acOnWKM2fOkJ6ezsoVK+jYsaNTmw4dO/LXX38BsHrVKpq3aJGT85mVlcWqVavo/g+c8Mb163Dc4Vr8tWYj3dq1dGqj/j7Ku598xfjhzzrdj5JCGtTjxOkznI6KJj09g6Wr1tK5fdsrOvfc+fOkpacDkJiUxO59ymkiZVFoZOo4ZepYsnodXdpfmZ01ql+P88kXSDxrpApt3bWHCIdJc1fCdTfexrtTZ/Lu1Jm069SNlUsXYbfb2R+5m/LlKxIY5OxgBwaFUK5cBfZH7sZut7Ny6SLadSh+binAtf+5g3GTZzNu8mzadOjO6mULsdvtHIzcdWkN5StwMHIXdrud1csW0qZDd2pG1OejWYt4f/o83p8+j6CQMN58/6srdsABkrbtpnzdWpSrVR2btzdV/+8Gohcuc2rjHRQA5vehzuDHOPn1z07Hq952Q7FTUbpffw/Dx//I8PE/0rx9bzaunI/dbufw/h34la94ydzvvJQrX4m3P1/F6A//YPSHfxDRoHmRHHBwn2fWuR17KB9RG78a1bF5exF20/XELl7u1MY7MPee1B74GKd/MO6Jl38lbD7eOW0qt2lJ8oFDFJVzu/ZQLqJWjobw/1xP7BLnieGOGmo9+ShnfpxXsIbWLUl2mNBZkkT/upTq9xtVngI6tCAj6RypZ2KI+XM1oX274hXgj1eAP6F9uxLz5+pS0WCVjuTIffjWrIlP1arYvLwI6nstCWtWObVJjYqiUhujYo9f7Qg8fHzISEzAw9cXD3NekX/b9tgzM50mdGquDtw+El4AS4HXgaPAdCALuBFoBRR/Gr8zHoAdaKeUSnc8ICK1gUnmscMi0hlwnO6fBqwHbhaRuUqpEhkf8vL0ZOgjd/PcuMlGqa2eXahbsxqf/DCfxnVr071tC6bO/okLKamMmPQpAFVCgpgw7Gn+WreZbfsOcPZcMr+vWAfAqwMH0DCiZpE1PP/Y/QwZM4HMrCxu7N2NurWq89m3c2lUvw7d2rVi38G/efmdqZxLTmbN5u1M/+5nvp48jozMDAaOGgcYk+9eHfQEXp6exboWnp6e/O9//2PUqFFkZWbSr18/ateuzayvvqJBw4Z07NiR6667jgnjx/PoI49QqVIlXho+POf83bt3ExISQtWqVQvp5fLX4oXH7mPwm5PIysrixt5dqVuzOp9+N4/G9SLo1q4lH8yaw4WUVEa+Nw2A8JAgxg83Sos9Neptjp46zYWUVG5+YigjBg6gYxH/wHt5ejLoiUd48fVxZGVl0b9PT+rUqsmMr39A6telS4e2RB44yKi33uP8+WTWbdrCzG/nMPOD9zh6/CTvTfsMD5uNLLude2+7xamqSlF1DH58AENHv01WZhY39O1JnVo1+PybOUj9unRt34Z9Bw4x6u1JnDufzNrNW5nx7Y98NXU8np4eDBxwH4NfHYvdDlKvDjddm3+S4JXSqm0ntm1ex6DH78LHLFGYzbBnB/Du1JkAPDrwBT6aNJb0tFRatulIy7bGS9zGtSv44pP3STqbyDujX6R2nQaMHDOxSBpatu3Cji1reeHJ2/Dx9eOJ517JOTZi0P2MmzwbgAFPDePTyW+QlpZKi9adciqj/FPsmZnse2ksbeZ8is3Tg5Pf/EyyOkT94c9wdvseYhYtI6hLexq8MhjsdhLWbWbvsNyUD7+a1fCrXoX4NcWfJ5BN01bd2Lt1JW88dwPePn5OqSVvv3g7w8f/CMC82RPZsvp30tNSeOWpPnTqfRs33DnwH/fvLs8se2Ym+18dR8uvpmHz9OTUD/NIPnCIOs8P5NyuvcT+tZyAju2oN+w5sNtJ3LgV9epYo+/6dWk07lXs9ixsNg+OTpvhVNGkSBpGv0WLGdOMMok/zuPCwUPUGTSQpF17iFu6goAOban7wnNgh8RNW9g/2vz/16uLjHnFSI/x8ODYJ18USwNAy1nvEdyjPT4hgfQ+vIIDb0zF5m24Isc+/Y7ohSsI7d+DnpGLybx4kZ2PGd/h9ISzHBj3EV3XGTZzYOyHpCdcemLlVaEjM5NjEycgEyeDhwexv/9GyuHDVHv0cS5ERpK4ZhXHP5hMxLARVLnrbrDbOTx2DABegUE0nPg+ZNlJi43h7zGji30trKKs5HGXJLar4aKISBLQWCl10kwNOYORi90UaAt8CxxQSl1rtp8CRCmlxl7mc5cDF4GbAF8MJ36kUuo3EVkCLFdKjTHb1gTSgVDgD6AekArMBLorpSJEJALYbLb5AAgH7snryF+KxO3LXX4zMryKX5miJDlb3vUTTAKTT7laAgCp3hVdLQEPu3vkGp72+meVS0qC9KySTSsqLvGdu7haAral2y7fyAJae265fKNSZueNT7paAgA27+KX+CwpLhwpfkWdskZYhytPfypN2q1e73LDuOP5wyXq48yZVMfl/6d/ytWSjvIesNRMDSkPbMJwutPN3wNxTkWZBdwrIttF5MHLfHYkhvO9A/jdzAcHuA9oIiK7RGQX8D0QoJTaBcwB9gIbgMN5P1ApZVdKPQ0cAeaJyD+rRafRaDQajUajKVNcFekoSqnRGFVPsrnO4VgGUDlP+00YUfIrYYlS6vkC+jwD3HMJPYMAx+XCXjP3HwFCHNoNvUINGo1Go9FoNGUWvVhPfq4KJ1yj0Wg0Go1Gc/WSZdclCvNS5p1wEbkBGFfAoRFKqZ4Wy9FoNBqNRqPRaMq+E66UWgD8s2XfNBqNRqPRaDTFRqej5KfMO+EajUaj0Wg0GteinfD8XC3VUTQajUaj0Wg0mjKDjoS7EZ7pF1wtwW3wvxhz+UaljM+FhMs3soJyro8eeKclu1oCACkV67taAsnp7lFLP6R5gKslcCy1eIvXlDS+Ntd/V0OaBLlaAgAZqRmulkD5EPeoyuvh6foy0tEbXG+b7sLVsC6N1WgnXKPRaDQajUZTqmRl6eooedFOuEaj0Wg0Go3mX4mIlAe+ANoAGcBQh4UbHds9BzzisKsuMF0pNUREemIUAdlvHktVSnW4XN/aCddoNBqNRqPRlCpuPDFzKJCklKovIg2AVSJSXyl13rGRUmoKMAVARLyBk8A3Dk32KqXaFqVjPTFTo9FoNBqNRlOq2O1ZJfpTgtwFfAKglDoAbAb6X+acm4DTSqnN/6RjHQnXaDQajUaj0VxViEgAUNAM9USlVGIRPqoWcNRh+xhQ8zLnPIKRwuJIQxHZCqQDHymlvrxcx9oJ12g0Go1Go9GUKqWQjjIYeK2A/aOB17M3TMe41iU+I7yonYpIVaA3MMBh91agplLqrIjUAf4SkZNKqb8K+yzthGs0Go1Go9FoSpVScMLfB2YWsN8pCq6Ual3Yh4jIMaA2kF0buRawrJBTHgIWKKViHfpIcvj9sIjMA7oA2gkvK6zdsY8Js34mK8vOf3t2YMDNfZ2Oz16wnF+Wr8fT04PAShV59Ym7qRoSxOa9B5g4e15OuyOnoxn39IP0bHtNkTWs276biTN/ICsri5t7d+Wh/17vdPyb3xbzy9I1eHl6EOBfkVFPPUTV0GBOx8Tx0oRpZNntZGRmcuf1vbj12h7FuxDA+q07mTxjNllZWdzYtwcP3HqT0/HteyKZMuNrDh09zutDBtKrc/ucYx999R1rt+zAnpVFuxbNGPTo/dhsRa8nu3ZnJBNm/0JmVhb/7dGBh2/q7XR89sIVzFuxAU9PTwIrVeC1x+6kaohRS3jK97+xevs+AB675Vr6dWxZ5P4B1m3bzftffEtmVhY39+nGg/93g9Pxb3/9k/lLVuHp6UGAfyVGDnyYqqHB7D98jPGfzSb5YgoeHjYG3Pof+nZpf4leLo9hm3PJysrivz07MuDma52Oz16wjF+WrTNs078irz5+L1VDg9i85wATZ/+c0+7I6SjGPfMQPds2L5YOu93O15+9x44ta/Hx9ePxQa8SUa9RvnaHD+5j+pQ3SEtNpUWbztz3+As5NrD4t+9ZsuBHbB4etGzbhbsGPFdkDXNmvMOebavx9vHjwWfGUKtu43ztfvlmKhtW/MrF5CQmzV6fs3/lHz+w8o/v8fDwxNevHPc++SpVa9Yr4pUA/3YdqPnMYPD0IPb3X4n6drbTce+wcOoMH4VnxYrg4cHJzz4macM68PQk4sWXKd+gIXh6Ev/nIs58M6vI/YNxLX6dNQ61YyXevuW444lxVI9o4tQmLfUiX099nvjo49g8PGjcqhf97xoCQEZ6Gj98MpyTh/dQvmIA9zwzkaDQ6kXS4A7PTYCKbdpT/clnwMOT+D9+J2bON07HvUPDqDnk5Zz7ceaLTzm3eYPT8YYff0nU1zOJnft9sTT4t+tAjacHgYcHcQt+I+q7/DYR8dJIPCtUxOZp2sTG9QT2uZbwO+/NaVeubj0in3qEi4cOFktH5Y4dqT14CDZPD6Lnz+f0rK+cjvtUqULdkaPwDgggIymJQ6+/TlpMNAAhN9xA9QFGgYqTM2cQu2BBsTT4d+hIrUHPY/PwIOa3+ZyZ7WzjPuHh1Bn5Kp4VK2Lz8OTExx9ydv06bF5e1H5xOBUaNQK7nWOTJ3Fu29ZiaWj+2TjCbuhJWnQcK1vdVGCbJpNGEnZ9DzIvprDj0eEkbdsLQPUH/kuDl/8HwIG3pnFy1rwCzy/LmCknRUk7uRRzgCeBzebEzHbAPYW0fxh43nGHGR0/o5Syi0gQ0A8YdbmOtRNeCCJiByrlnSHrCjKzsnjny5/4cPhThAcF8OCrk+jephl1q1fJadMoojq3jxmCn68PP/61hinf/spbzz5E2yYN+GbciwCcPZ/M/70wjo7XSLE0jJ/xLVNHDiYsOJABL79Ft7bNqVujWk6bhhG1+PKtHvj5+vDTnyv44OufGDv4CUICKzP9zZfw8fbmQkoK9w59g25tWhAaVPQFRzIzs5j42VdMem0YYcFBPDbsNbq2a02dmrl/nMNDgxnx7ON8+8tCp3N3RR5g174DfDlxLAADR45h255IWjfL7yRd7lq8/dXPfDTsCcKDKvPAa5Pp0bqJ0/2Q2tWZNXow5Xx9mLNkLZO/+523n3mAVdv3EnnkJN+8OYT0jAyeGDeNzi0aUbFc0Ra4yMzM4r3Pv2byK0MICwrkkZffpFvbltSp6XA/6tTii3dG4efry9w/lvHhrDm8OeQp/Hx9ePXZR6lZNZyY+EQefmkMHVo2o1KF8kXSkH0t3pk5hw9fHmjY5ivv0b31NdSt4WCbtWtw+5tDTdtczZRv5/PWcwNo27QB37w1DDBtc8ibdLwmv9N8pezcspYzp4/z7sc/cWj/br6c9g6vTcibtgdffvwODz89gnoNm/HeG4PZuXUdLdp0Zt/OzWzdsJIxk7/G29uHpMT4ImvYs2010aeP8frUXzlyYBffffomw97+Ol+75m170LP/3bz+rPMf33bdbqD7dXca/59Ny/npywk8M2pa0UR4eFBr0Avsf3Ew6THRNPp4OmfXribl6JGcJlUfeIj45UuInT8Pv9oR1H97ArvvuZ3Anr2xeXuz99EHsfn60nTm18QvWUxa1JkiXwu1YyWxUUcZOmERxw/tZN4Xo3l6dH4HsvsND1OvSQcyMtKY/tYjqB0rkRbd2bTiJ8pV8OfF9/5gx7oFLPr+Pe59ZuIV9+8Oz00APDyoPnAQh0cOJT02hvrvf0zS+jWkHs9NQw27+wESVy0jfsF8fGvWps4b7xD58N05x6s+/rSTU14cDTWfG8KBYc+THhONfDSds+vy2MR9D5GwfCmxvxo2UW/cePbcdwcJSxaTsGQxAH516lLvjbeK7YDj4UHECy8SOehZ0qKjaTpjJomrVnHxyOGcJrWefY7YhQuIXbAA/zZtqPm/gRx643U8/f2p/shj7H5kANjtNPviSxJWrSLz3Lkia6g9ZCj7n3+OtOhomkz/gsTVq0g54nAtHnqY+KVLiJk3F7+ICBqOn8TOO/6P0JtvAWDPQ/fjFRBIw/cmsfexh6EYC9Gc+HIuRz6aTcsZ7xR4PPT67lSoH8Hyxv0I6NCCZh+8ztoud+IdWJmGo55hdcfbsNvtdNswl6hfl5KRmFTg57gLWSU7mbIkGQ/MFJGDQCbwhFLqHICIvAGcUkp9bG53ASoCf+T5jNuA/4lIOoZv/aVS6pfLdayro1wl7Dl0jJrhIdQIC8Hby4t+HVuxYstupzZtmzTAz9cHgGb1axMVn/8FccnGHXRu0SinXVHYe/AwNcLDqB4eireXF9d2bsvKTTucNTSTXA0N6hAdZ2jw9vLCx9sbgPT0jH9UtH/fwUPUqBpG9SpheHt70bdrR1ZvdI5EVA0LpX5ELTw8nCPcNhukpqeTkZFBekY6GZmZBAX4F1nDnkPHqBkWTI2wYPN+tGT51j1Obdo1qU8581pcU6820QlnATh8MopWUhcvT0/K+frSoGY11u6MLLKGvQcPU6OKeT+8vejbpT0rN293atOmWSP8fI0VHps2rEd0vLF6W61qVahZ1UiFCw0KILByJRKTiviHzGTPoaPUDA91sM3WrNiyy6lN26aOthlRiG02LpZtZrN140q69LoBm81GfbmGC8nnSIyPdWqTGB9LyoVk6ss12Gw2uvS6ga0bVhgaFv3Ejbc9hLe3ocE/oOirIO7ctIwOPW/CZrNRp2FzLlw4x9mE/CvA1mnYnMqBofn2lytfMef31NSLQNFHaSo0akzKqROknT6FPSODhKVLCOjSzbmR3Y5n+QoAeFaoQHpsbM5+Dz8/8PDEw9cXe3o6mReKt2Lq3q1Lad31Fmw2G7Xqt+DihXMkJTpfCx/fctRrYpTT9fLyoVpEE87GRzmc/18AmrXvx8E964u06p47PDcByjdsRNqpk6SdOY09I4PElUvx79TFuVHe+xGXa7f+nbqSfuY0qceOFKt/MGwi9aSDTSz7i8qduzpLwI5nhYI1ZBPUuy8Jy5YUW0fFJk1IOXGC1FOGjvi/FhPYvbtTm3IRdUjabBSdSNqyJed4QIeOnN20kcykJDLPnePspo0EdOxUZA0VGjchNa+Grs4asDtei4qkxxp26xdRh3NbDW0ZiQlknjtHhUZFC+JkE796M+nxZy95PPzmPpw0R2MSN+zAu7I/vlVCCe3XlZgla0hPOEtGYhIxS9YQdl23S36Ou2DPspfoT0mhlEpWSt2hlKqvlBJH51kp9Wq2A25ur1FKVVdKZeb5jA+UUk2VUi2VUs2UUuOvpG8dCXdARG4FxgEpwE8O++0Ywwr/BYKBx4G+wPWAN3CHUmqf2XYsRrmbOGA50KeodSMLIjohkXCHqHFYUGV2Hzp2yfa/rNhA5xb5Hwx/rt/Gff17Fk9DfCLhwYG5GoID2XPw8CXbz1+2hk4tm+ZsR8XGM+SdDzh+Jppn77+tWFFwgJi4BMKCg3O2Q4OD2Hvg0BWd20wa0LpZY2559Dns2Lm1f18iahRtePRV7BYAACAASURBVBsgOuEs4cG5+sODAth96Ogl2/+ycgOdmxsR3ga1qvHZvMXc378HKWnpbN53kDrVw4qsISY+gTDH+xEUyJ4Df1+y/a9LVtGpVf6h9D0H/iY9I4Pq4fkdwishOt75WoRd7losX1+wba7bWmzbzCYhLprgkNx5NkEhYSTERRMQFOLUJjA493oHBRttAKJOHUPt3c6Ps6fh7ePD3Q8Pom4D5/SJy5EYF01gcK6GwKBwEuOiC3S4L8WKhd+x5LdZZGSkM/j1z4rUP4B3SCjp0dE522kx0VRo3NSpzamZM2g4fhJht96Oh58fB4YOBiBhxTICunSj+U+/4OHrx4mPphQ90miSlBBNQFBu1LlyUDhJ8VH4BxR8LS4mJxG5bTldrnvAOD8+ioBg43xPTy/8ylfiwvlEKlQKLPD8vLjDcxPAOzg0x4kDSI+Nobw421XU1zOpM3YCwTffioevH4dHvgCAh185Qm+/h8MjhxJ6213F1xASmpPSAZAeE0P5xs4aTn85gwbvTCT0v7fh4VeOAy8Ozvc5gT37cOiV4cXW4RMaRlp0VM52WnQ0FZo62+aFgwcI7NmLqB++J7BHTzwrVMDL3x/v0FDSopzP9Q4t+nPLJzSUtLzfjyZ5vh8zptNw4mTCb7sDj3J+qMHPAnDx4AECunYj7q/F+ISFUV4a4RMWTvK+vUXWcTn8qoVz8UTuCFTKyTP4VQ/Hr1o4Kccd9p+Iwq9akecXatwAHQk3EZFw4DPgFqVUSyA1T5NEpVQ74CXgF2CNUqoV8BUw0vyMm4AbgRZAJ6CBRfKdWLB6M/v+Ps6D/3HOUY5NOMvB46fp9A+G+6+UhavWs+/QUe6/uV/OvvCQIL4e/yo/TX6TBSvWE+eCobMTp6M4euIUcz97n58/m8zWXXvZsVeVap8L1mxh7+ETPHhDTwA6XSN0adGIR8Z8wMiPZnNN/dp42kr3q7ho5Toi/z7KfTdf57Q/NiGRN6Z+zqiBD+PhUfqPgwWrN7Hv72M8eGOfPDrOcvD4KTo1L15EqaTIzMwk+fxZXh0/g7sGPMeH775cpMhrSdGj/9288eHv/N/9g1n4Y9Gd8CshqE9fYhctYNed/8fB4UOJePkVsNmo0LgJ9qwsdt5+C7vvvZ3wO+7Bp2q1y3/gPyQzM4NvPxpK5373Exx2uepgJY+rn5sBPfuQsHgRkQ/ewZHXXqLm0BFgsxF+3wBi580hK+ViqfYPRpQ77s+F7L77Vg6NGErEy6OM4UOT8o2akJWSQsqRSwdfSoJjU6fg36oVzb78Cv9WrUmLjsZu8ZLnQX37EbtwATtuvZn9Q4dQd9TrYLMR8/tvRhrN9C+o9dzznN+9C3tW5mU/TwP2rKwS/SkL6Eh4Lh2ArUqpbI/sU8AxUSs7kXErYHdY0nQLcKv5ey/gB6VUMoCIfAm8UhLiwgIDnIZJo+PPEhZYOV+7DbsVM+Yv5tORz+Dj7Xx7F2/YTq+21+Dl5Vk8DUEBRMUl5GqISyA0MH80e+POfcycu5Bpr7+Qk4LiSGhQAHVrVmN75AH6dGxTZB2hwYFEx8XlbMfExRMadGWRsZUbNtO0YT3Km/nXHVu3YLc6SIsmRcv1DAusTFRc7v2Iik8ktMD7sZ/P5y/hs5H/c7ofj97cl0fNCWIjPvqaWlWLHs0JDQok2vF+xCcQGpz/OmzcuZeZc3/no9HDnO5H8oWLvPDWFJ685/9o1rDoE/+yCQtyvhbR8YmXts1fFvPpqGcLsM1t9GrbvFi2+dfvc1ix2BiyrVO/CXGxuZGy+FjnqDdAoEPkGyDeITIeFBxG2469sNls1GvYFJuHB+eSEvGvXLh9rVj4HWuWzAWgdr2mJMTlakiIjyIguOgjHQBtulzPt5+NLfJ56bExeIfl9ukTGuYUiQUIueEmDgwzJkAm792Dh48PXpUrE9TnWpI2rofMTDISEzm/ZycVpBFpp09dUd/rFn/DxuVzAKhR9xoS43Mjdmfjo/APKjhiN3fGa4SE16br9Q/m7PMPCicx7gyVg6qQmZlByoVzlK945SNo7vDcBEiPi8E7JPc77h0SSnqc8/0I6ncDh18x5kdciNyLzdsHT//KlJfGVO7ag6qPPIVnhYrGQiVpacT99jNFIT02Bp/QXJvwDg3NZxPB/W/k4HAjAp+8dw8e3r54Va5MRqJxDQN79SF+WaHFHi5LWkw0PmG5NuATFkZ6jLOO9NhYDrxsRNs9ypUjqFcvMs+fJz0mhkqtWzude25r0SdFpsXE4JP3+5FHQ+iNN7H/BWMkIHnPbmy+PnhVDiAjMYHjUyfntGs87VNSjl96dOWfkHIqinI1qpD9lPerXoWUk1GknIoiqEfuRHq/GuHEr9hYKhpKEjdeMdNl6Ej4lZNi/puJc5Q8EwteZprUrcnxMzGcjI4jPSODP9dvo3tr5+GzyCMnGDdjDhOHPEZQ5Ur5PuOPddu4rlOhlXoKpXG9CI6fieZUdCzpGRksXruZ7m1bOLVRh4/x9vTZjB82kKDKubnWUXEJpKSlAZB0Ppkd6iC1q1WhODSqX5fjp6M4FRVDenoGf61eT5d2ra7o3PCQYLbtjSQjM5OMjAy274mkdo2iR/ma1K3J8ahYTsZk34/t9GiV936cZOzMn5j0/MME+efej8ysLBLPGTm2B46d4uDxU3Rs1rDIGhrXj3C+Dms20q2A+/Hup7MY/9KzTvcjPT2Dl8Z/SP8enejd6Z9lSzWpWyuPbW6le5tmTm0ij5xg3OffM/GFS9jm2q1c16noL2QAff9zB2Pe/5ox739N6449WLNsAXa7nYNqF+UqVHRKRQEICArBr3wFDqpd2O121ixbQOv2Rj5o6w492LdrCwBnTh4lMz2dSv6Xd/p69L+bERN+YMSEH2jevhcblv+K3W7n8P6dlCtfsUipKNGnc1N5dm9dSViVS5W3vTTJkZH4Va+BT5Wq2Ly8COzdh8S1q53apEWdwb+1ce/9atXG5uNLRmIiaVFRVGpl3AsPPz8qNG5KyrFLpxflpdO19zJo7M8MGvszTdv0YevqX7Db7Rw7uAO/8pUKTEX5Y85kUi6c58b7X3ba36RVL7auNl6wdm/8k3pNOhSpkpE7PDcBLuxX+FSrgXd4FWxeXgR0703S+rVObdJioqnY0rjuvjVr4eHjQ+bZRA4Ne47Ih+8m8uG7if3lR6K//7rIDjgYNuFbvWauTfTqy9m1a5w1REdRqbWhwbAJnxwHHJuNwJ69/1E+OMD5ffvwq1kT36qGjqC+15KwaqVTG6/KlXMi8NUefIjo334FIHHDeiq374BnpUp4VqpE5fYdSNywPl8flyM5ch++NWvi46hhzSqnNqlRUVRq0w4Av9oRePj4kJGYgIevrzFnAvBv2x57ZqbThM6SJPrXpVS/35gTEdChBRlJ50g9E0PMn6sJ7dsVrwB/vAL8Ce3blZg/V1/m0zTuiI6E57IemCEiDcxlSx8rxmcsB0aLyCQMp/2BkhLn5enJiw/dxrPvfmKUo+vRgXo1qvLxjwtpXKcmPdo0Y8q387mYksrwKTMBCA8OZNILxn/jVEw8UfGJtG5U/Iinl6cnQx+5m+fGTSYrK4ubenahbs1qfPLDfBrXrU33ti2YOvsnLqSkMmLSpwBUCQliwrCnOXLyNFNm/YgxyczOfTdeS/1aRc/FztYx5LEHGfLGu2Rl2flPn+7UrVWD6d/+RKN6dejavjX7DvzNiHcmcy45mTWbtvH59z8ze/Jb9OzUni279vHQ4BHYbDY6tLqGrlfowOfVMOzB/+OZdz8j027nlu7tqFejCtN+WkSTOjXp0bopk7/7jYspqbz0gVH6qkpwAJOef4SMjEweG/shABXK+THmqXvx8ix6lM3L05MXHr2XwWPfN0o19upC3ZrV+fS7eTSuF0G3di35YNYcLqSkMPI9Y15JeEgQ44c/y5J1m9i+7wBJ55JZsMxwBkY9/TAN6xTd4fPy9OTFAbfx7DvTTNvsaNrmAtM2r2HKN78Ytjl5pqkjkEkvPA7AqZg4wzYbF982s2nRpgs7N6/lxaduxdfXj8eezR2IemXwfYx536hS8tCTw/hsyhukpaXSvHVnmrfpDED3vjczfeoYRjx7N15e3jw++LUil69s1robe7au5rVnbsTH148HBr6Rc2zc0DsZMeEHAObOmsTmVQtIS01hxBPX0rnPrdx41/9YvvA71M71eHp5U65CJR58dkzRL0RWJsemTKLBuxOxeXgSu/A3Uo4cpurDj3FBRXJ27WpOTPuA2kNfIuyOO8EOR94xIu4x8+YS8dIImnxhlK+LW7SAi39f2ZyLvEiL7kRuX8n4odfj7ePHHY/nRvUnj/w/Bo39mbPxZ1g2/xNCq9Vl6iu3AdDp2vto3/N22va4jR8+fonxL1xHuYoB3PP0hCL17w7PTQCyMjk1bTJ13xwPHh4k/LmQ1GNHCL//YS4eUCRtWMvpzz6ixqChhPz3drDD8Ylv/7M+C9BwfOpE6r8zEZuHB3ELfyfl6GGqDnjUsIl1azj58QfUGjKMsNvuArudo+/m3q+KzVuSHh19xSMilyQzkyPvTUDen2KWB/yVi4cPU/3xJ0jet4/E1avwb21URLHb7Zzbvo0jE4w5bplJSZz6YgbNZhgVj07O+JzMpGKkNWZmcmziBGTiZPDwIPb330g5fJhqjz7OhchIEtes4vgHk4kYNoIqd90NdjuHxxrfQ6/AIBpOfB+y7KTFxvD3mNHFvhQtZ71HcI/2+IQE0vvwCg68MRWbORJz7NPviF64gtD+PegZuZjMixfZ+dgIANITznJg3Ed0XfcjAAfGfkh6wqUneLoLJbzUfJnA5op8R3fFYWLmRYyJmWOASsA5zFKFIhIBbFZKhZjn9AQmZE++FJG3gduBeAzHvqlSqg9XwLlNC1x+MzK9i16irjRI9y7nagmUOx99+UYWkFaueBNYSxLvtOJVxyhp9lQseiWEkiY53dfVEgAIeO6KHiulyrF3Vl6+kQX0teWtFmY9h19719USAMhIzXC1BNIvpLtaAgAenkWvLFTSRG9IuHwjC/hPunL5xeh154YS9XGW/dDB5f+nf4qOhDuglJoLzHXY9ab5r82hzREgxGF7OeA4nj9WKTVcRDyA6cC60tKr0Wg0Go1Go7k60U54yfOVGS0vhzFp0z3CIxqNRqPRaDQuoqxUNClJtBNewiil/s/VGjQajUaj0WjcCV0dJT+6OopGo9FoNBqNRmMxOhKu0Wg0Go1GoylVdHWU/GgnXKPRaDQajUZTquh0lPzodBSNRqPRaDQajcZidCRco9FoNBqNRlOq6Ooo+dGL9Wg0Go1Go9FoNBaj01E0Go1Go9FoNBqL0U64RqPRaDQajUZjMdoJ12g0Go1Go9FoLEY74RqNRqPRaDQajcVoJ1yj0Wg0Go1Go7EY7YRrNBqNRqPRaDQWo51wjUaj0Wg0Go3GYrQTrtFoNBqNRqPRWIx2wjUajUaj0Wg0GovRTrhGo9FoNBpNIYiIj6s1aMoe2gnXlAgiUq2AfS1cocUdEJFKBeyr5QotrkbbRi4icnsB+0ZarMFbRJqZP15W9l2AllBX9u8uiEiIiNxo/oS4Ws+/HREZn2fbC/jJRXI0ZRiXPoA1/wwRiQHsBRyyAXalVJiFcn4WkT5KqfOmtibAj0ADKzoXkU0UfC0AUEq1t0KHA3NFpL9SKgNARKoCC4Gmpd2xm9kFuNA2ROSGwo4rpRaUtoY8vCQip5RSawFE5HmgDzDWis5FpCvwLXABwx78ROTubD1WISIdgB8wAkE1RaQt8IRS6gmL+p+llHrgUs8NK58XInIr8CmwBeOezBCRJ5RS86zSYOoQYBRQDwffwIprISLvFnZcKTWstDXkoaaIPK2U+lBEPIBvgEgrBVzCNs8C64B3s5+nmqsb7YRf3bR1tQAHJmE4njcAEcA84CEL+x9qYV9XwiLgC+ABM9q3CHjFor7dyS7AtbbxYiHH7IDVTvitwO8icgfQC7gd6Gdh/x8C9yulVgCISDdgGmD1yMREoD/wNYBSarOIfGlh/++b/7rDc2Ms0FkptR9ARBoA8zG+J1byHTAH47mVaXHfyRb3dzkeAhaJyBngZiBaKVXYs6Q0WIIRqMj+XjwAnAKqY3xnH7BYj6YUsNntlwweajRFQkReBDpgRHv/p5Ra7lpFrkVEJmM4el2BiUqpb1wsyWVo28hFRJpjDG3HA32VUucs7HuHUqrF5fZZoGOTUqqdiGxTSrUy9+X8/m+ioP+3iGxVSrW2WIflduDOiEggsApYr5R6zAX9r1NKdXLY9gDWAp2AvUqpxlZr0pQ8OhJeBhCRmsC7GNEsv+z9Sqm6FvTtONy/F7gTWAyUF5EbrB7uF5HKwEtAS5yvRW+L+m/isDkdmAEsB7aLSBOl1F4rdJhaXGYXZv/uaBuC87VYaVHfc3AeWs4CzgOfiwhKqTut0AEsFpH7lFJfm7ruBf6wqG9HUkWkIuY1Mb83KVaLcGUKhgO/mPMCPsdIR3kYmCci5QCbUuqCRTrWiUhzpdROi/orEBHpR/7n9xsW9Z03la8cUFVEbjZ1WJnKFyIifkqp7O+FLxCklLKLyEULdWhKEe2Elw1mYAwltgTuA/4HHLKo77xDdOeBa8wfVwz3z8Bw+BpipH88gpFraRW/F7DvNvPHDljiAJu40i7AjWxDRO4CJgCBwEmgPrADsCra+Fue7YLsxAoeAoaIyHRz2xeIE5GHsXa+wFjgT6CaiMwErgfut6hvR1yZgpHNq+a/Y/Lsfx3je+JpkY4OwMMionB4IbI4P/5toB3GiNkvwC3AX1b1j3ul8v2A8WL0g7l9O/Cj+fJ6xGWqNCWKTkcpA2QPZ4rILqXUNeaw1TqlVAdXa7Oa7CFVEdmplGouIr7AMqVUZ1drsxptF7mIyA7gWuAP85pcC9yulHrSxdIsRURqF3ZcKXXUQi11geswor9/KqUOWtW3gwadgmEiIj0K2p89f8AiDbuAVsAW8zleHfhMKVXoBOuyiojcBPQ0N5crpX51oRxNKaAj4WWDNPPf82YZvCjA8tJfrhzudyDV/DdNRIKABFxwLbIRkTCcr8cxC7t3C7sAt7CNDKVUdHZJPqXUYhF5x8L+gZxSZ4+Qf7j9ESv6V0odNTVI7i6jgo+ViMgwpdS7GBPM8u6zEpelYIhI+cKOW5iGkt1f9mTdCua2KyZLpiilMkTELiLeSqmTIlLDahGuTuVz6O9XQDveZRjthJcNVpoO50cYqRepGCXgLMMNhvuz2W9ei2+A9UAi1qajACAivTFmtYdjDHP7AHGAlTmFLrcLcBvbSBURG3BARJ7FGM6taGH/2XyC8dztheGA3gtY9jJilgL8CcMWbICXiNymlNpqlQaTuzGcnMvtKxUcyr9547oUjPMUUlYV69JQgJyRiW8wXhDtIrINo5LO3xbKOGe+nKwFvhSR04Ar8p9dncqXPV9hJMbz0lXzFTSljHbCywAOpZNmicgKwF8ptdtiGSOANuQZ7rdYA0qp7LzSiSKyEQjAqM9tNeMx6j9/j+FsPopRns8y3MQuwD1sYxTgjzFpdxpQGRhosQaA9mZq0E6l1Fsi8hFG7qtVTAYeUUotgZyXxalAFys6N+99P4xccEeHuzLGS4FVuLw0oVLKA0BERmG8FH2KcQ0ew3hpt5pPTA1fmNsDzH3XWqjhHiAD4/4MwXh+W/53BAhRSn0uIoOVUutEZANGfe7RFmqYA8wCZuK6+QqaUkY74WUAEfkhu7pCdrqD4z6LcJfh/veVUoNNDauz9wGDrdailNpvDqnagekishnDGbQEN7ELcA/bOKWUOoux2EVfABFpZLEGyI3qZYpIeaXUWTNlySoqZDvgAEqppSIy0cL+08iNADumO5wG3rJKhJV5zlfArXnKEU4QkS3AOIt1hCqlZjhsfyEigyzWcK1SajaGnbwJICL3A7Mt1uEOqXwZSqnxl2+muZrRTnjZoH4B+6x2MNxluL97AfsKnHBUyqSb/540J9ccAYIs1uAOdgHuYRvfkD/9paB9pU28GPWHFwELRSQWI0XHKi6ISM/sOu3mZDzLco9N53eFiPzkolEZJ9xkyL+ciNTPnpgqIvWAQvPFS4ksERGllDJ1NMT6COwQ8jvcBe0rbdwhlW+RGKsuu2IkV2MR2gm/ihGRx4EngIZm6kU2lQFlsRyXDveLsQLhnUCEQ0knTB2WTnAymWw6W69gOHuVgeet6NjN7AJcaBsiEoKRh+8nIo3JTXmoDFSwQkMe/qOUyhSjLvS9GMPtX1nY/yCMMmfZOeHeGOUzLUUptVtcWA/aAXcY8h8JrDej3zaMa+KKqj0jgFUist3cboFFqzKacxU6YNTGdnw2VMYFqTluksr3F0YN+Sxy53BYWUZUYwHaCb+6+RM4AHyAc03mJMDS2f5KqaXmrznD/RazH6P2cnucazAnYSz/aylKqW/NXzdScES6NHEbuwCX28Z9GKlI1XCuS34WiyYBOmI64P5AfXPY3er+N4lIfZyro6QXdk5pIK6vB52NOwz5L8IYkWlubm9XSp2wWoRSapGINMN4hoKxUmSsRd1Xx6jRXQHDLrJJwshNtxwR6QM0Vkp9ICLhItJQKbXfQgmfYizctBWdE15m0XXCyxCuLC1l5rVOBGoppbqLsTR3Z6XUxxbrCFJKxVvZ5yV0lMeILNVVSt1r5h83UkrNc4EWV5YccwvbEJERSimrc2wL0nEDxmS3TKVUhBkBfE0pdZOFGpqRW3t4qbJwFVcHDW5RD1pExgGrXDnkb0Y67eSO0tgx0tk2Ao9np4f8GxCRfkqpP91Ax3DgBqCqUqqBWSbxO6VUVws1bNSVUMo+OhJeBnCT0lKfYVQhyR5KjMTI47PUCQc8ROQ7jMokYCyTPkgpFWOxjmkYk82yFwI5AXwLWOaEu4ldgBvYhlJqnBhLo/cydy1RSkVa1b8DozEifQtNXZvNHGBLEJGnMV4Os0eLhovIWKXUtEJOKw3coh407jHkPxJjwu4Ms/+HgBDgb4wXtp6l2bmILFFK9ZH8S7a74losFpEnyR0x+xOYbk5ut5J7MCLzGwGUUifMESwrmSciT2GsnOlYPtMV6ZWaUsLD1QI0JUJ2aalyGBN6PjP3WUl1M7KZCaCUSgOyLNYAxv97P4bj2QojLcPqawHQXCk1HHOWvVLqPNZ/39zBLsANbENEHsB4IWtp/vwlIvdZqSEbpdSZPLtSC2xYOgwCWimlnlBKPYHxHbFkrkIe8taDfg/X1IPOHvJvhfFy1BbndAgruF0p9b5SKkkpdVYpNQVj7sBMINiC/rPLumb/37N/XHEt3gHuwAhWzDN/t7zKFnCxgDQtq18E3sSYGBqLUVHoPHDOYg2aUkZHwssG7lBaymnVPREJwNq6v9nUU0o5TjR7zWGikZU4OVYi4of1Trg72AW4h20MBdpkO8AiUgX4A/jaYh3nRCQc8w+6iPTEWFDKKpKUUtHZG0qpGBFJsrD/bAqqB32HC3TEK6UsX8AqD+VFpG72CJWI1CF30nCpr2aqlDpt/nqXyrNiqYgMw9q5E9cDrZW5iqs5yX4LMMxCDQDHRaQrxgiiB8bo0R4rOpbclVQrWdGfxrVoJ7xs4A6lpeaKyCdAJREZgJF6MKPwU0oFDxEJy3Y0zHxkV4z4rBSREYCv6WgNwdpFWcA97ALcxDYcI9BKqTNGdTrLGY6RilJHRJYDDYCbLex/sYhMBz43twcAf5ipOliRHy4insCbSqnHcagH7SLcYch/FLDRrI4CxiTNp0SkIkb1Fqtw6SqmJjacI86OufJW8ixG1aJmGNW1VmFM8raCwlZStaP9tjKFvpllA5eVlspGKfWuObwfgDGhZYorqj9gLI++TUSyc15vwHB8rGYkRvTmHMYfsfnA2xZrcLldgNvYxiERGU1uOs7jGDm3lqKU2igivYDOGM7FWqWUlZHwu81/++TZfy/GH/i6pS3ArBDT/PItLSH7BeAjch0+OxYuGa+U+klEVmGU6APY4DBaUeqTicV9VjEFY3RqoYjMNLcfMvdZivnC3s+MSnuY6YRW9e1uK6lqShFdHaWMICKh5D7ErSwt5XaISFNyJ+AtU0pZMozojmi7MDBHRKZgTPiyY0zIG+SYmmGhlhCgo7npVvdERJorpUq9jKWIvIUx3P4VRuQPsCYSr3FGjAWbegJP4TxZOgn4WSl1xEItHhhrHGRPzPwL+MQFEzOzKxn1NjeXWF1BR0S2KueVVBGRLUqpNlbq0JQuOhJeBpDcpdp/K2CfVRqqYjg52c7vUgwn5/SlzyoVHcPMvMY9BeyzUkcljIV6ch7iGEPwlk2scQe7MPt0B9tIUUrd7bjDBdUOEJFbMSJb2QuzzBCRJ1xRuvISzMSaVUSz78V/HPZZEonXOKPcaxXTnuYk7pyXARHpjfHMsAwRGQvcBHxn7npLRDorpV6xUIa7rKSqKUW0E142cIel2mcBKzGqLwA8Yu6zenEWd8hrBCPnOQl4ztx+GPgCuN1CDe5gF+AetrGc/M5lQftKm7EYNdL3A4hIA4xUJXdxwi1JP1BK1SnsuFUReU0uyj1WMZ1A/u9kQftKmzswqgglA4jIZGAbRmDFKhxXUgWjgs8TFvavsQDthF/FiHst1V41z8P6TRG5x6rO3SyvEaCZUqqxw/ZaEdlnRcduZhfgQtsQES+MPEoPESmH87L1rogqpTiuuqeUOiAirijNdyncJT9xJtY7Xv9qxIWrmIqximtDwN9MA8nGVd/TBJyflSnmPstQSs0VkdU4pxNavd6FppTRTvjVjTst1X6wgKEzK5f4TSN3VrnjypCngbcs1JHNKREJyc73FZFg4KRFfbuTXYBrbWMk8Br57SIJeM8iDY78IiIjMaqT2DBGSOZlvyDohThycMWL87+d/5C7iumTIvIGxtoCVtAFo1JPuMpYygAAEaJJREFUOPCiw/4k4AWLNDiyFmOC6Jfm9v3A6uwXBKXUAitEmHNWfrWiL41r0BMzywBymaXaReQjpdTASx0vIQ1/YjxIV5u7ugBrgLMASqk7S7N/Bx3NCstrFJFRSqlSL4kmIt8DXcnNx/4PRpmr4wBKqVKve+sOdmH243LbEJEPlFLPFHI854WplHUUtkiRXSllWVWOghCRbUqpVq7UYOrINylNU7qIyCalVDuzmlI7pVS6iOxUSllWyUZEBpiLFF3q+PVKqUUW6FhWyGG7Uqp3Icc1mitGR8LLAIU5WiYdL3O8JPga54VPvrGgz3xcwcSiW7GmLvFe8ycbqyJKObiJXYAb2EZhDrjJn1iQ/pBdfuxSlPbLgIjUUEqdKKTJB6XVt8btybuK6WksXsW0MAfcZBxQ6k64UqpXYcetehnQlH20E64pEZRSXxZ23Kqo6xVg1cSz0YUdtyoi7w5cJbbhLukPpf0ysFFE1gEfKqXyVZxQSn1ewDmuwF3ux7+JezAW83L1KqaF4S52YcnLgKbso51wjVVYFXW9HO6Sf2VVRP5qwB1sw13sorSdjAjgLmCsiFQGPgS+srJ0JuiIvDuilIpy2HTXZ9O/5Xuq+ZegnXCNxjXoh7imIErVyVBKpWGUh5wlIp0x6iC/ZU5AG2Ph4kVXS0S+zCMicyjE7qyaz3OV4S4vA5qrHO2E/zvIdLUAN8JdnF93eIhru8jFXeyi1BGR2hirI96LUYJuOsaiUn9gVMewggjcICKvARwW87oK+Nd8TzX/DrQTfhUjIk0KO569BLRSqp01ilxPQStC5tnXzwWyLEXbRbGY62oBJqXqZIjIbxh1oD8BWiul4sxDa0Xk7kufWbK4UUT+X8/l5mxYiYjcr5SaXci+ES6QVRD6ZUBTImgn/Ormd4yIqg2ohVFT1Y6xwMExoNBV6SzGqqhroatEutFiB6X5EL+a7AIssA0RqYSx2l12abGlGM7eOQCl1JjS1nCFlPbLwEzgZ6VUvmuulGpWyn074SYReY3JpdJSLE5HGQLMvtQ+pdRCK0RcRS8Dmqsc7YRfxWQv/SwiU4GVSqk55vbtFOyMljjuEnV1t1UiXRmRdwe7MPtzC9swmYHxMvKcuf0w8AVwuwV95+AGLwN3KqV+zKPpB6vzft0lIq9xwjEtxQ/ju7H3Em1LFBFpi7EyZIiIOFZKqoyx4q3VuMXLgKbso53wskF3pdSz2RtKqR9FZJRFfbtL1NXdVol0h4i8K+0C3Mc2AJoppRo7bK8VkX0W9p+Nq18G6hewr5FFfTsyEzeJyGsM8qaliMgXGCUzraA60BaoADi+lCdhrKRpCW74MqAp42gnvGxgE5FuSqlVACLSBSh0UZCSwl2irkqpHcAOEZl/BYvUlBpuFpF3mV2A+9iGySnHhXBEJBg4abEGcNHLgIg8DjwBNBSRjQ6H/r+9O421qyrDOP6/FBEQFBNBEeOAyqOBYBEH1MaBYhUBNUaixREDYkRBKQq2SgGVUetEVCAyxwklVENEoVWsQKG2KMThFUSJIg6IAzYUi71+WGv3nHt7W0zsWWux7/P7cjgbmv2G7nvP+z5n77UeBcSozz+FJhJ526RxUnM8chGxGFgsaU5ElGr8p9LEMGDTh5vwfjgS+Iqk1fn9NqSNF0qqnbp2Fkg6GVgNfJ+08ckRk+/vG6GWEvkWrgto49q4mzSkdV+5HwAsk3RGrumDheqoNQx8D7iVtP72B4aO/xO4ucD5J2slkbds0j3hWwB7AlcVLmNhDguWAtdFxNqSJ29oGLBpwk14D0TEMkm7Ahocin8XLqNq6jpkv4iYJ+kAUnPzRlIzXKQJbyWRz7W0cF1AG9fGz5l4f+u5hc/fqTIMRMQdkn4PXB8R14ziHP+LBhN5Gxi+J/wB4MyIuKFwDe8DZpOem5gpaSWwJCLOKFxH1WHApg834f2xJXB/fn2apPUPvhXSSuraeTFwWUTcKanGmty1E/lO7esCGrg2IuKkkufbhGrDQET8R9Kepc63Ea0l8pZ194RL2i6//1eFGlYAKyRdDBwIHE/6VrF0E97KMGA9NzY+3sKeIfb/kHQkcBpwD7AuHx6PiF0L17EVlVNXSVcBtwH7k5Y5uxdYFRFFmw9JP42IZ+VE/i3APOCKiJhZsIYmrotcS5VrQ9LBEXHppIes1ouIz5eooxWSTgW2By4C1jdZJQczSTOAL0bE4aXOaQ9O0jNIa7d3D8beArw1In5ZsIbPAbOAv5Fu31sCrJjqAd5C9ezCYBjYISIeXaMO6y8n4f0wj/TA1x2V62ghdT0EeBNwYUT8TdKTgUWFaxhWM5Fv5bqAetfGHsClTHzIqlPs76OhYaBb/u+AoWPjQLHBrJFE3jZ0AfA5UiMO6ffoBcA+BWvYl/QA+w9I3yBWacCnGAbmAitK12H95ya8H/5Yu9HaWOpKwQ93WL/036eH3v+W9EFS2p8lfYGUyJ8maUtgRuEaql8XUPfaiIiF+fXQUZ/rQTQxDHQr1jRgqaSzqJjI2wa2i4iLht5fIum4kgVExO6SHgfsBxwGnCfpVxHx6pJ10MgwYP3nJrwfrsoPdn0VWNMdLPyB1kTqKukvTL3r206FS2khkW/huoAGro3cTJzbPSybVyV5R0ScWeL8DQ0DSJoNPDMizpK0E+lr9l8VLqN6Im8bWClpVkT8CNY/QP3jkgVI6vYUeBLwZGBH4Dcla4CmhgHrOTfh/fDW/Hrw0LHSH2hNpK6kNV47W5Ma4eJPtjeSyLdwXUAb18bciDi9exMRf5V0CFCkCe/UHgYkHQ+8CtiZ9HDkVqQNhGaVOH+noUTeBp4FXCPptvz+qcAt3So2EfG8AjXcDywnrUpyInA96UHuoloZBqz/3IT3QCMfaE2krlM0eydIWg6MejvwCVpI5Bu5LqCNa2NsimM1fv/VHgbmkgbVrrH6vaRHFjr3BI0k8jZwdO0CgDsiYsJGXpJuIK0uVVITw4D1n5vwhzBJD4+I+yVtO9W/j4iSOzS2krpOkNfJLn0rClRM5Bu7LqCNa+NWSccAnyI15O8nraJTWu1h4L6IWCtp+FjxJbJaSeRtoFs/XtIj8vvVm/4Tm09+ZmYrYLWkbRj8nDwKmPL32Ii1MgxYz7kJf2i7nvRL4V+kD9LhD/hxCj4I2ErqOimBnkG6xt9Xuo7KiXwz1wU0c20cRdqw6RTS/4PrSEtHllZ7GPidpFnAuKQtgPnAzwqev9NMIm9JDiy+DMwkXR83AW+OiNsLnH4BsDD/83Dz/0/gkwXODzQ5DFjPuQl/CIuIbio/Arg6Iorfs9Zg6vrS/DoO/B34R8lEZ2NKJvLddRERNXYsXa+layMi/gDsWyPlm6T2MPBe0ooke5BWf1hG+pamtCYSeZvgbOAc4Pz8/u352MtHfeK8mdZJks6KiPeM+nyb0MQwYNOHm/B+mAnMyxuiLAWuBpZGxJ8LnLup1JW0wcSED3NJa0mJ2+ERUWRr7BYSeUmHkYaz35Y875Bmro38oNU7gKdHxPF5tZrHR8R1pWqA+sNARPwRmJMHoy1q7IqYtZLI28COEXHe0PvzJRW9T7xyA97SMGDThJvwHoiIIwEkPYG05NeppCe7R97ktJDGT7IAuI90f+kY8DbgMcDtpFTnpYXq6M5TM5HfCzh2aDhbQhrO/lTi5K0k8tki4LGkoeB40k6qnyZtiV1M7WFA0lLgS6QNpGo14NBOIm8D6ySpCyok7QZMy7Wx3YBbKW7Ce0DS3sBs0pqmOwPfJTVcJdVM44e9PiL2Hnr/WUkrI2JvSfMK1lE9kZ9iODuFQsPZsAYSeYCXkYaSVbB+VZKtK9RRexj4JHAo8ClJi4HzS38bAE0l8jYwH1gm6SekAGNP6jw3YTZtuAnvhxWke0vnR8QPaxRQM42fZFtJu3YPE0l6CvCI/O8eKFhH9US+keEMKify2ZqIGO/uQc63QEy1UsmoVR0GIuIK4Iq8Pvlc4DOSto+IZ5SqAZpK5C2LiCsl7Q48Px9aHhF316zJrO/chPfDPqRtdj+S19u9lpQ8XlaqgIYavg8DN0pamd8/G3iXpO1I24aX0kIiX304g2YS+VskvQkYy7eAfIh0C0RprQwD6/LrGFDjdqEmEnnbgB+ONSvITXgPRMSNpMbzYuBA0tfcR1C2yWml4fumpGUM0pwbhm6JOaVgKS0k8tWHM2hmQDuGdCvIzsANwLfysdKqDgOSDiKtejELWAwcHRHXljp/p5VE3gYkvY60OspK0nB2nqR3RsTldSsz6y834T0g6SxSs7UN6ev+D+fXkppo+ABy0/3t0uedpHoi38hwBpUHNEkzgGMj4nDg8NLnn6T2MHAUcAFp/ef7Cp53Y2on8jbwceCF3a6lkp5Ouj7dhJuNyNj4uL99eqiT9E5gSUT8uoFadmHQ8D0xIko3fM3Iw8hUiXyp808ezpaS7sW+q3Adz8t1zCatlV7jdqkbI6LoSihT1DADOCEiFj7ofzz6Wqqulz5FIn9hjUTeBiTdFBF7TTq2amgFLDPbzNyE22bRSsNnAy0NZ1B3QJO0kLT5xkWkdcuB8ptJ1R4GJu+KCJTcFXG4jqtIifxljSTy056kE4G1pAdmx0j37G8JnAmMVdh4zaz33ITbZtFaw2cgac+IuHnSsVdExHcL11F9QJO0borD46W/qak9DOTm9ytM3BXxkIgY+a6IG6mn9g6mlm3kZ6RT/GfFbDpwE27WU5JuB06PiLPzKhwfBw6KiD0K1+EBLas9DEj6SUTMfLBjBepoIpE3M6vJD2aa9dcLgEskzQYeB/yawjtEZssnN+CVEvnHkB4gBrg+Iv5a8vzQxO6hreyKeDZpJY7hRP5soEoib2ZWg5Nwsx6T9BrgEuAfwEtqpNEtJPJDy6+tyodmAlWWX6s5DEh6JelWmAm7IkbE90rVkOtoIpE3M6updipjZiMiaRFwEvAc0tJ0SyS9oUIpLwBeL+nrwA9IqXzpRL5bfm1ORMwBXkTa1bWoPAz8kvT3cRTwC0mvLXX+iLgS2B34LPAZYPfSDXi2Tt2ORVRN5M3MqvHtKGb9tT2wT0SsAULSTcBXga+VLCIi/pQfzuwS+UMrrLSwplv/ONd0q6Qaq3K0sBZzC19/zgeWSZqQyNctycysLN+OYjaNSHpYRKwtfM5FpNVR3kBKYRcBx0VEsWGgleXXaq/FPMWuiDVvy9mRwTr6yyPi7tI1mJnV5CTcrMckzSE1WlsPHT65cBktJPIn5NePTjp+IikZLrX82mJJC5g4DFwuaRvKDAMtJPEdJ0BmNq05CTfrKUmnAc8lpc+LgdeQdqp8c9XCqJPIt6D2Wsy1k/ihczaTyJuZ1eIk3Ky/DgD2AlZGxBGSTgbOrVFII4l8dQ0sUVg7ie+0lMibmVVR+wPBzEZnTUQ8AIzn5PlO4Amli8iJ/HHAMcAuwLuB3UrXYUC6LeejwB+AO4GPkW7JWQ3cW7CODR6UBbx9vZlNK07CzfrrXknbAtcBF0q6izqNTjOJ/HTXQBLfaSWRNzOrppVfyGa2+c0lrb18LPBz0oNwB1eoo4lE3prSSiJvZlaNH8w0s5GStBQ4EPgEsANwFzArIp6/yT9oZmbWY74dxayn8o6EC4CnMfSzHhGld6scTuSPITXiNRJ5MzOzZjgJN+spSTcDF5OWgVu/JXhEXFOtKDMzMwOchJv12QMRcWbtIhpK5M3MzJrhJtysv66UtH9EfKdyHZeSEvkLGErkzczMpjM34Wb9dTVpKbh1wP2kpeDGI2KnwnU0kcibmZm1xEsUmvXXOaT1l/cibV//nPxa2pWS9q9wXjMzs2Y5CTfrr3si4hu1i6CdRN7MzKwZbsLN+utySe8Cvg6s6Q5W2I2wS+RX4XvCzczMADfhZn32sfz6edJumWP5dUbhOlpJ5M3MzJrhdcLNbKQkzQfuoX4ib2Zm1gwn4WY2aq0k8mZmZs1wEm5mZmZmVpiXKDQzMzMzK8xNuJmZmZlZYW7CzczMzMwKcxNuZmZmZlaYm3AzMzMzs8L+C8D1DOnlv7L8AAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"tags":[],"needs_background":"light"}}]},{"cell_type":"markdown","metadata":{"id":"SWRPvSoZQ341"},"source":["We can see clusters of highly correlated parameters, such as gust and max wind, or GDP, population, poverty population, and Twitter activity (i.e. parameters that scale with population). Let's find these redundancies quantitivately. Specifically, we will use **Variance Inflation Factor (VIF)**. The VIF of an independent variable is a measure of how much its variation can be attributed to other independent variables. The higher it is, the more redundant the (not so) independent variable is. VIF is calculated as follows:\n","\n","$$ VIF = \\frac{1}{1 - R^2_i} $$\n","\n","where $R_i^2$ is the $R^2$ of the multilinear regression model of the $i^{\\text{th}}$ independent variable using the other independent variables as predictors. Why not just use $R^2_i$ to measure redundancy? One intuition is that the inverse relationship will harshly penalize smaller and smaller values of $1 - R^2_i$ (the so-called **tolerance**).\n","\n","We will loop through the independent variables, construct a multilinear regressor for each one, and compute and collect the VIF's. Standard practice is to discard predictors with VIF's over 10. 5 is used sometimes too, and we'll try both threshholds and see how well they filter out our data in the models."]},{"cell_type":"code","metadata":{"id":"nnUg2sP6-DIk","executionInfo":{"status":"ok","timestamp":1603527193662,"user_tz":240,"elapsed":2289,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"57295083-34c5-44fb-dc11-c1b5c2d939ea","colab":{"base_uri":"https://localhost:8080/","height":284}},"source":["from sklearn.linear_model import LinearRegression\n","from sklearn.preprocessing import robust_scale\n","\n","# preprocess data\n","features = df.drop(labels = ['dmg'], axis = 1).columns\n","X = df[features].apply(robust_scale)\n","Y = robust_scale(df['dmg']) # get a weird error if I try .apply\n","\n","vif_dict = {}\n","# run linear regression for each feature and calculate VIF\n","for feature in features:\n"," X_i = X.drop(labels = [feature], axis = 1)\n"," Y_i = X[feature]\n"," reg = LinearRegression()\n"," reg.fit(X_i, Y_i)\n"," r2 = reg.score(X_i, Y_i)\n"," vif = 1. / (1 - r2)\n"," vif_dict[feature] = vif\n","vif_dict"],"execution_count":3,"outputs":[{"output_type":"execute_result","data":{"text/plain":["{'gdp': 52.9500797270263,\n"," 'gust_peak': 12.338585234562844,\n"," 'gust_total': 7.567335957063809,\n"," 'maxwind_peak': 20.868875746207838,\n"," 'maxwind_total': 19.164251074726092,\n"," 'mhi': 5.406652921497213,\n"," 'population': 160.54620481443504,\n"," 'poverty_pop': 151.20740399956702,\n"," 'poverty_rate': 5.049258457172382,\n"," 'precip_peak': 16.206418387213727,\n"," 'precip_total': 16.29621857409362,\n"," 'twt_peak': 276.13105651634396,\n"," 'twt_total': 252.13557403271057,\n"," 'wind_peak': 4.817369273234568,\n"," 'wind_total': 8.387395886294627}"]},"metadata":{"tags":[]},"execution_count":3}]},{"cell_type":"code","metadata":{"id":"vbIlotUwTksT","executionInfo":{"status":"ok","timestamp":1603527193666,"user_tz":240,"elapsed":2279,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"fd16bb89-6474-4093-9a44-184dbf78bb7c","colab":{"base_uri":"https://localhost:8080/","height":141}},"source":["vif_s = pd.Series(data = list(vif_dict.values()),\n"," index = list(vif_dict.keys()))\n","print(\"Variables with VIF less than 10:\")\n","vif_s[vif_s < 10]"],"execution_count":4,"outputs":[{"output_type":"stream","text":["Variables with VIF less than 10:\n"],"name":"stdout"},{"output_type":"execute_result","data":{"text/plain":["wind_total 8.387396\n","wind_peak 4.817369\n","gust_total 7.567336\n","poverty_rate 5.049258\n","mhi 5.406653\n","dtype: float64"]},"metadata":{"tags":[]},"execution_count":4}]},{"cell_type":"markdown","metadata":{"id":"jFmHET7jZGLm"},"source":["So... using a tolerance of 10, the VIF test says we should use three wind variables, poverty rate, and mhi (the last two being strongly correlated with each other; see heat map). This does not look like it will work out well. Let's see:"]},{"cell_type":"code","metadata":{"id":"0ONf_rgoZhOS","executionInfo":{"status":"ok","timestamp":1603527193670,"user_tz":240,"elapsed":2271,"user":{"displayName":"Angel Umana","photoUrl":"","userId":"02017183028986324110"}},"outputId":"17e077fb-ecdf-41b8-a467-3240fb71b03e","colab":{"base_uri":"https://localhost:8080/","height":35}},"source":["from sklearn.model_selection import cross_validate\n","\n","vif_features = vif_s[vif_s < 10].index.values\n","\n","reg = LinearRegression()\n","cv_scores = cross_validate(reg,\n"," X[vif_features], Y,\n"," scoring = 'r2',\n"," cv = 5)\n","best_score = np.max(cv_scores['test_score'])\n","print('Best CV r2: %.2f' % best_score)"],"execution_count":5,"outputs":[{"output_type":"stream","text":["Best CV r2: 0.25\n"],"name":"stdout"}]},{"cell_type":"markdown","metadata":{"id":"M7zFHveFb8GG"},"source":["By using only `wind_total`, `wind_peak`, `gust_total`, `povery_rate`, and `mhi`, the best $R^2$ from 5-fold cross-validation was 0.25. Not so hot. Let's rethink the multicollinearity problem. Looking back at the heat map,there's 4 distinct clusters:\n","\n","- Wind: `wind_total`, `wind_peak`, `gust_total`, `gust_peak`, `maxwind_total`, `maxwind_peak`\n","- Precipitation: `precip_total`, `precip_peak`\n","- Socioeconomic: `poverty_rate`, `mhi`\n","- Population: `poverty_pop`, `gdp`, `population`, `twt_total`, `twt_peak`\n","\n","Looking back at this I wonder two things:\n","\n","1. Why are there so many wind features?\n","2. Why the sum of wind features?\n","\n","The answer to #1 is actually easy: I don't know which one of average winds, gusts (i.e. sudden, fast winds), and maximum sustained winds (i.e. the highest average wind speed that is sustained over 1-minute intervals) is the best predictor for hurricane damages. But in retrospect, the popular Saffir-Simpson scale for classifying hurricanes in the US uses maximum sustained wind speed, so I should just use that.\n","\n","For #2, this is a good question. There's really no good reason, physically or analytically, to use the sum. What does the sum of average winds over a time period represent? The distance wind travelled? That doesn't seem physically significant. Furthermore, not every county has the same amount of samples of wind data, so I can't even say that it's a proxy of averages.\n","\n","So, the next step right now will be to look back at the weather data and\n","\n","- Remove `wind_` and `gust_` features.\n","- Replace `maxwind_total` with `maxwind_mean`"]}]} \ No newline at end of file -- 2.43.0